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Abstract  
 

In this study, we examine statistically the dependence between Seasonal Variation of consumed values 

and the ChainErrors of corresponding excellent indices in different subgroups Ak.  

First, cyclic seasonal variation of values is calculated by simple regression analysis and the ChainError is 

calculated by the Multi Period Identity Test. Secondly, Quadratic Means QM of these two variables (or 

dimensions) are used in our analysis. Two quite obvious properties of the variation of quadratic mean 

should be specified: First, Mean of Absolute Values (MAV) varies roughly in proportion to single 

absolute values. Secondly, Quadratic Mean (QM) varies roughly like MAV, because for moderate 

changes 𝑄𝑀(𝑥) ≈ 𝑀𝐴𝑉(𝑥), although 𝑄𝑀(𝑥) ≥ 𝑀𝐴𝑉(𝑥) for any variable  𝑥.  

The Quadratic Means of cyclic seasonal variation of values and ChainError (difference between base 

and chain strategies) both show variation found in typical months. The dependence between these two 

quadratic means is shown in the paper by simple regression analysis. We show that there is a very 

strong statistically significant dependency between Quadratic Means of Chain Errors and Quadratic 

Means of values in the seasonal index. Our main empirical findings are the following: ‘Never use any 

construction strategy that is somehow connected with the chain strategy’.  

Our test data is a scanner data from one big Finnish retail trade chain which includes monthly 

information of unit prices, quantities and values form January 2014 to December 2018, and has more 

than 20 000 homogeneous commodities that are comparable in quality. 
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2 
 

 

1. Introduction 
 
We use a scanner data from one big Finnish retail trade chain. The test data set contains monthly data from 
five years starting from January 2014 and ending to December 2018. The classification of test data is based 
on cartesian product of coicop7 commodity groups (151 groups) and GTIN commodity identifiers. For each 
GTIN, the data set contains price, quantity and value information and the data can be called as complete 
micro data. This data includes more than 20 000 commodities that are comparable in quality in all time 
periods. 
 
Our research question in this study is “Does the seasonal variation of values cause ChainError to the index 
series constructed by chain strategy?” To answer this question we need: 

1. Excellent index number formulas (Vartia & Suoperä, 2017, 2018). 

2. Index series constructed with both base and chain strategies. In both strategies the base period is 
defined to be previous year normalized as average month. We get four blocks of index series to 
years 2015, 2016, 2017 and 2018. 

3. The Multi Period Identity Test (MPIT) (Walsh, C. M., 1901, 1921), described empirically in Vartia, 
Suoperä, Nieminen & Montonen (2018) and the Quadratic Mean (QM) of the monthly ChainErrors 
(CE) derived from the MPIT in log-scale. 

4. The Seasonal Index to estimate systematic seasonal variation of values and the Quadratic Mean 
(QM) of the monthly seasonal components of the seasonal index in log-scale. 

5. Regression of the Quadratic Mean of ChainError on the Quadratic Mean of Seasonal Index. 

 

The basic index number formulas (Laspeyres (L), log-Laspeyres (l), Harmonic-Laspeyres Lh), Palgrave (Pl), 

Log-Paasche (p) and Paasche (P)) are contingently biased and may never be used for complete micro 

dataset (Vartia & Suoperä, 2017, 2018). Therefore we perform analysis using the following excellent index 

number formulas: Stuvel (S), Törnqvist (T), Montgomery-Vartia (MV), Sato-Vartia (SV), Walsh-Vartia (WV) 

and Fisher (F). 

The items one to two in the list above are already familiar to most of the index number statisticians, but 

three and four are not. We show in chapters two, three and four how ChainErrors, Seasonal Index and their 

Quadratic Means are derived. In chapter five the empirical relation of the Quadratic Means is 

demonstrated. Chapter six concludes. 

Our benchmark index series is efficient base strategy that is free of the ChainError: This strategy is easily 

applied with the excellent index number formulas. Our proposal is based on the following 

links 𝑌𝑒𝑎𝑟(𝑡 − 1) → 𝑌𝑒𝑎𝑟(𝑡). 𝑚 . It compares all months m of the current year  𝑌𝑒𝑎𝑟(𝑡). 𝑚 with the 

(normed) previous year  𝑌𝑒𝑎𝑟(𝑡 − 1). With this method there is no need to differentiate commodities 

according to seasonal variation – all commodities may be treated equally in index calculation. This strategy 

with excellent index number formula is hard or perhaps impossible to beat. Detailed analysis for our 

benchmark base strategy and for the chain strategy is presented in Appendix 2. 

Our aim is to explore if the seasonal variations in the commodity group induce differences in the base and 

chain indices calculated by excellent index number formulas. More precisely, does the largeness of the 

seasonal components in the value series, as measured by its Quadratic Mean (QM) per month during the 

observation period, reflect itself in the largeness of ChainErrors (CE) derived by Multi Period Identity Test 

(MPIT) (Walsh, 1901, 1921; see Vartia, Suoperä, Nieminen & Montonen, 2018). 
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2. Definition of Quadratic Mean 
 

Both Seasonal Index and ChainError vary around zero and we are interested how much they deviate from 

zero. To measure the mutual dependence between seasonal variation and ChainError, we think, it is most 

essential to use Quadratic Means for that. It is the focus of the paper. 

The Quadratic Mean (also called the root mean square) is a type of average. It is used mostly in the physical 

sciences referencing the “square root of the mean squared deviation of a signal from a given baseline or fit” 

(Wolfram, 2019). Quadratic Mean statistic for vector x of n observations is defined as 

(1) 𝑄𝑀(𝑥) = √
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1  

Taking the square root eliminates much of the huge variation of the squares, and the resulting output, 

namely the mean, 𝑄𝑀(𝑥), is of the same overall size, but always larger than the Mean Absolute Value 

(𝑀𝐴𝑉) of these signed numbers, that is 𝑄𝑀(𝑥) = √
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 ≥ 𝑀𝐴𝑉(𝑥) =

1

𝑛
∑ |𝑥𝑖 |𝑛

𝑖=1  ≥ 0.  

Quadratic Mean is used because it has ‘better’ mathematical properties and easier to understand 

statistically. The basic properties of the Quadratic Mean are demonstrated in Appendix 1.  

 

3. Measuring seasonality  

The seasonal variation (relative stationary variation of the month’s values from the trend) is most easily 

calculated by regression analysis using logarithms of values 𝑦𝑡.𝑚 = 𝑙𝑜𝑔𝑣𝑡.𝑚 . This is done for every 151 

subset Ak of commodities during a balanced period having in our data the years 2014-2018, which as a 

balanced time series contains all the 12 months during each year. We have 𝑦𝑡.𝑚 = 𝑙𝑜𝑔𝑣𝑡.𝑚 as the 

dependent variable to be explained, while the independent variables are time 𝑡 = 𝑡. 𝑚 and its square (a 

quadratic time trend) and monthly dummies. Only 11 monthly dummies or indicators can be used and one 

month must be arbitrarily chosen as the reference month. It does not matter which of the months is 

chosen as the reference because the differences in the (logarithmic) seasonal indices are invariant of the 

choice.  

The estimates of the dummy coefficients may be deduced to seasonal components (𝑠𝑚, 𝑚 = 1,2, … 12 for 

all subsets Ak). The seasonal coefficients are normally small values around zero either up- or downwards 

summing up to zero for all subsets Ak.  

Table 1 shows some examples of cyclically behaving seasonal components, 𝑠𝑚, 𝑚 = 1, 2, … ,12 and their t-

test statistics. The seasonal component and t-test statistic are symmetric in signs: if the t-test statistic is 

negative, the seasonal component is also negative, and vice versa. If the seasonal component is negative, it 

has been sold less than the average would indicate. Quite surprisingly, all these commodity groups have 

also very serious Chain Errors in all blocks that is for years 2015, 2016, 2017 and 2018. Diewert and Fox 

(2017) describe that if chain bias is 6-8%, it is significant.   
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Table 1: Some coicop7 commodity groups, their seasonal components and t-test statistics in log-

percentages. 

  Month 

coicop7  1 2 3 4 5 6 7 8 9 10 11 12 

Sweet 
pastry 

𝑠𝑚 -0,104 0,071 0,115 0,082 0,318 -0,008 -0,091 -0,060 -0,173 -0,052 0,074 -0,173 

t -4,967 3,393 5,509 3,899 15,164 -0,376 -4,325 -2,875 -8,250 -2,459 3,540 -8,253 

Crisp 
bread 

𝑠𝑚 -0,299 -0,219 -0,029 -0,138 0,072 0,104 0,095 0,056 -0,073 0,015 0,221 0,195 

t -12,986 -9,519 -1,268 -6,014 3,128 4,531 4,135 2,431 -3,179 0,648 9,604 8,489 

Beef top 
side 

𝑠𝑚 0,179 -0,048 0,211 0,185 -0,293 -0,407 -0,596 -0,411 0,009 0,132 0,547 0,492 

t 3,235 -0,859 3,812 3,336 -5,297 -7,358 -10,766 -7,417 0,169 2,387 9,876 8,881 

Filet of 
beef 

𝑠𝑚 -0,180 -0,296 -0,004 -0,044 0,095 0,224 0,134 0,113 -0,083 -0,092 0,124 0,009 

t -4,618 -7,615 -0,099 -1,138 2,448 5,761 3,453 2,896 -2,137 -2,353 3,174 0,227 

Beef  
strips 

𝑠𝑚 0,193 0,065 0,207 0,001 -0,155 -0,316 -0,341 -0,145 0,020 0,129 0,211 0,131 

t 6,812 2,303 7,294 0,039 -5,472 -11,145 -12,035 -5,122 0,708 4,538 7,444 4,636 

Pork 
tenderloin 

𝑠𝑚 -0,205 -0,346 -0,082 0,043 0,364 0,491 0,390 0,237 -0,233 -0,200 -0,107 -0,352 

t -4,775 -8,076 -1,918 1,004 8,491 11,446 9,091 5,528 -5,425 -4,658 -2,496 -8,213 

Pork  
strips 

𝑠𝑚 0,121 0,005 0,179 -0,046 -0,160 -0,272 -0,257 -0,007 0,107 0,196 0,195 -0,061 

t 4,935 0,204 7,330 -1,903 -6,534 -11,118 -10,528 -0,287 4,382 8,042 7,986 -2,508 

Pork 
joint 

𝑠𝑚 -0,079 -0,152 0,071 -0,030 -0,156 0,014 -0,083 -0,165 0,028 0,147 0,276 0,127 

t -2,056 -3,985 1,867 -0,788 -4,073 0,369 -2,162 -4,317 0,732 3,858 7,229 3,325 

Pork 
sirloin 

𝑠𝑚 -0,375 -0,341 -0,070 -0,017 0,251 0,419 0,351 0,183 -0,040 -0,054 -0,017 -0,290 

t -9,664 -8,783 -1,807 -0,430 6,456 10,794 9,041 4,715 -1,036 -1,394 -0,427 -7,465 

Cucumber 
 

𝑠𝑚 0,109 0,042 0,117 -0,046 -0,052 -0,061 -0,109 0,122 -0,123 -0,109 0,136 -0,026 

t 4,727 1,816 5,085 -1,984 -2,267 -2,676 -4,758 5,306 -5,335 -4,726 5,941 -1,129 

 

When seasonal components are calculated for all of the 151 coicop7 groups, especially January, February 

and December come up most often having quite large up- or downward seasonal components with 

significant t-test statistics.  In groups displayed in Table 1, many commodities have exceptionally high or 

low seasonal components in May, June and July. Figure 1 shows an example of seasonal variation for the 

commodity group ’01.2.2 Pork’ and its coicop7 groups.  

Figure 1: Seasonal components for the commodity group ’01.2.2 Pork’. 
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Figure 1 above gives some examples of cyclic seasonal variation of values. In practice, almost all commodity 

groups have different profiles telling us that the seasonal variation of values is not so nicely behaving as 

commonly believed. The profiles of seasonal variations may be for example downward descending, upward 

increasing, up- or downward concave curves, they may have the shape of saw blade or some mix of them.  

When prices and especially quantities vary highly between months (bouncing effect), it may cause 

problems in calculations. In this study, we use values because these are natural part of the index numbers 

and are essential in our hypothesis. Same analysis could be performed with quantities as well. 

 

4. Measuring Chain Error  
 
The base and chain strategies based on the excellent index number formulas satisfying the Time Reversal 
Test (TR) are used for defining the Multi Period Identity Test (MPIT). The MPIT reveals that the chain error 
occurs when an index does not return to unity when prices in the current period return to their levels in the 
base period.  
 
We test excellent formulas comparing chain and base strategies for each index number formula separately. 
We simply calculate the base and chain indices for any price index number formula P satisfying the time 
reversal test. The base period in both strategies is the previous year normalized as average month.  
Because the direct price-link or binary compilations have no circular or chain error, then if chained indices 
for any time path deviates from corresponding direct price-link, the chain strategy includes chain error 
surely.  
 
In this study we do not use the basic form of the MPIT (see Vartia, Suoperä, Nieminen & Montonen, 2018), 
but its logarithmic difference, that is 
 

(2) 𝐶ℎ𝑎𝑖𝑛𝐸𝑟𝑟𝑜𝑟(𝑃, 𝑃𝑒𝑟𝑖𝑜𝑑) = (𝑧𝑡.𝑚) = (𝑙𝑜𝑔𝑃𝐵𝑎𝑠𝑒
𝑡.𝑚 − 𝑙𝑜𝑔𝑃𝐶ℎ𝑎𝑖𝑛

𝑡.𝑚 ), where 𝑡. 𝑚 𝜖 𝑃𝑒𝑟𝑖𝑜𝑑 

 
where  P is an index number formula belonging to the family of excellent index numbers (Vartia & Suoperä, 

2017, 2018). Equation (2) defines the ChainError (CE) used in this study as the relative (actually logarithmic) 

difference of the index series calculated using the chain strategy compared to its values calculated using 

the base strategy. The CE varies around zero and gets data contingently positive or negative values, if the 

chain index exceeds (is lower) the base index. 

In the 𝐶ℎ𝑎𝑖𝑛𝐸𝑟𝑟𝑜𝑟 the first year 2014 is used as the base of our index computation strategy, which means 

the 𝐶ℎ𝑎𝑖𝑛𝐸𝑟𝑟𝑜𝑟 is calculated only for the periods  𝑡. 𝑚, where 𝑚 = 1, 2, … , 12 and 𝑡 =

2015, 2016, 2017, 2018. Therefore, the ChainErrors are calculated only for the time series starting from 

2015.1 and ending to 2018.12 . As an example, for June in 2017 we have 𝑧2017.6 = 𝑙𝑜𝑔𝑃𝐵𝑎𝑠𝑒
2017.6 −

𝑙𝑜𝑔𝑃𝐶ℎ𝑎𝑖𝑛
2017.6 and for the whole year 2017 we have a piece of the time series (𝑧2017.𝑚) = (𝑙𝑜𝑔𝑃𝐵𝑎𝑠𝑒

2017.𝑚 −

𝑙𝑜𝑔𝑃𝐶ℎ𝑎𝑖𝑛
2017.𝑚) = (𝑧2017.1, 𝑧2017.2, … , 𝑧2017.12).  

We give two graphical examples of that. Figure 2 presents the MPIT’s for Stuvel (S), Törnqvist (T), 

Montgomery-Vartia (MV), Sato-Vartia (SV), Walsh-Vartia (W) and Fisher (F) for the commodity group 

‘01.1.7.1.3.2 Cucumber’ and Figure 3 its log-transformation (i.e. equation (2)). 
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Figure 2: The MPIT for selected excellent index number formulas for commodity group ‘01.1.7.1.3.2 

Cucumber’. 

 

Because the index does not return to unity, ChainError occurs. This can be seen in both figures. 

Figure 3: Logarithmic difference of the MPIT for selected excellent index number formulas for commodity 

group ‘01.1.7.1.3.2 Cucumber’. 

 

We have 151 ‘coicop7 commodity groups’ and four blocks of the MPIT’s and their log-transformations (i.e. 

for years 2015, 2016, 2017 and 2018) - so we have 604 similar pairs of figures. In most cases the MPIT’s are 

close to one (i.e. in log-scale close to zero), but sometimes deviate very strongly from it.  The y-scale is 

compressed to +/- 4 log-% in Figure 3, so that the commodities with high ChainError can be distinguished.  

5. The Quadratic Means for the Chain error and the Seasonal components 
 

In chapters three and four we defined seasonal components, 𝑠𝑡.𝑚, 𝑚 = 1,2, … ,12 and chain error 

components (𝑧𝑡.1, 𝑧𝑡.2, … , 𝑧𝑡.12) for t = 2015, 2016, 2017, 2018 for all subsets Ak. Now we define the 

Quadratic Means of them for all subsets Ak, that is for 151 commodity groups (see some basic properties of 

the Quadratic Mean in Appendix 1).  
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5.1 The Quadratic Means for Chain error  

In the Quadratic Mean of 𝐶ℎ𝑎𝑖𝑛𝐸𝑟𝑟𝑜𝑟(𝑃, 𝑃𝑒𝑟𝑖𝑜𝑑) for index number formula P, all the signed individual 

components 𝑧𝑡.𝑚 = 𝑙𝑜𝑔𝑃𝐵𝑎𝑠𝑒
𝑡.𝑚 − 𝑙𝑜𝑔𝑃𝐶ℎ𝑎𝑖𝑛

𝑡.𝑚  of its input time series are denoted generally as the following 

vector or more concretely, a time series: 

(3) 𝐶ℎ𝑎𝑖𝑛𝐸𝑟𝑟𝑜𝑟(𝑃, 𝑃𝑒𝑟𝑖𝑜𝑑) = (𝑧𝑡.𝑚) = (𝑙𝑜𝑔𝑃𝐵𝑎𝑠𝑒
𝑡.𝑚 − 𝑙𝑜𝑔𝑃𝐶ℎ𝑎𝑖𝑛

𝑡.𝑚 ), where 𝑡. 𝑚 𝜖 𝑃𝑒𝑟𝑖𝑜𝑑  

and the QM of them are 

 (4) 𝑄𝑀 𝑜𝑓 𝐶ℎ𝑎𝑖𝑛𝐸𝑟𝑟𝑜𝑟(𝑃, 𝑃𝑒𝑟𝑖𝑜𝑑) = 𝑄𝑀(𝑧𝑡.𝑚) = √
1

𝑇
∑ (𝑧𝑡.𝑚)2

𝑡.𝑚 𝜖 𝑃𝑒𝑟𝑖𝑜𝑑 . 

For example, when the MPIT’s deviate only harmlessly from one for all 𝑡. 𝑚 𝜖 𝑃𝑒𝑟𝑖𝑜𝑑, the CE components 

in (3) are close to zero and the QM in (4) gives small positive values close to zero. Note, that the 

components  𝑧𝑡.𝑚 are typically small numbers, but sometimes can vary quite greatly around zero. Then 

their squares (𝑧𝑡.𝑚)2 become all positive (or very rarely null), but small numbers, say 𝑧 = 10−3 even 

become much smaller 𝑧^2 = 10−6, but large numbers, say 𝑧 = 0,2 or 𝑧 = 0,5 stay large as their squares 

are 𝑧^2 = 0,04 and 𝑧^2 = 0,25. Thus, the relative size or relative variation of numbers grows much in 

squaring. When we take an average over these squares and the square root of it, we end at the Quadratic 

Mean of the original signed numbers. 

As we already have told, the first year 2014 is used as the base of our index computation strategy, which 

means the ChainError is calculated only for the periods 𝑡. 𝑚, where 𝑚 = 1, 2, … , 12 and 𝑡 =

2015, 2016, 2017, 2018. Therefore, the ChainErrors are calculated only for the time series starting from 

2015.1 and ending to 2018.12 . It has 4*12 = 48 months (not 60 = 5*12 months) so the Quadratic Mean of 

this time series is finally 

𝑄𝑀 𝑜𝑓 𝐶ℎ𝑎𝑖𝑛𝐸𝑟𝑟𝑜𝑟(𝑃, 𝑃𝑒𝑟𝑖𝑜𝑑) = 𝑄𝑀(𝑧𝑡.𝑚)

= √
1

48
[∑ (𝑧2015.𝑚)2 + ⋯ + ∑ (𝑧2018.𝑚)2

12

2018.𝑚=1

12

2015.𝑚=1
] 

The calculation of the QM of chain error for all subsets Ak may be calculated using quite simply three 

steps: 

1. Square all signed log-differences 𝑧𝑡.𝑚 over the whole period 𝑧2015.1 − 𝑧2018.12 of 48 observations. 

2. Calculate means of squared CE i.e. 𝑀𝑆(𝑧𝑡.𝑚) (= [𝑄𝑀(𝑧𝑡.𝑚)]
2

). 

3. Finally take square root of 𝑀𝑆(𝑧𝑡.𝑚) to get 𝑄𝑀(𝑧𝑡.𝑚) = 𝑄𝑀 𝑜𝑓 𝐶ℎ𝑎𝑖𝑛𝐸𝑟𝑟𝑜𝑟(𝑃, 𝑃𝑒𝑟𝑖𝑜𝑑). 

Steps one to three have been applied to excellent index number formulas P – for Stuvel (S), Törnqvist (T), 

Montgomery-Vartia (MV), Sato-Vartia (SV), Walsh-Vartia (W) and Fisher (F). All calculations have been 

programmed with SAS. 

The small squares (𝑧𝑡.𝑚)2 have only small influence in 𝑄𝑀(𝑧𝑡.𝑚), but the influence of large squares is 

stronger. Typically 𝑄𝑀(𝑧𝑡.𝑚) gets small or very small positive values, when it is calculated for different 

subgroups Ak of consumption. However, sometimes it abruptly gets very large values, sometimes perhaps 

even 1 000 times higher than the typical small values. In statistical language, the distribution of 𝑄𝑀(𝑧𝑡.𝑚) 
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over our 151 subgroups of commodities get values or lies always on the positive side of the real line, mostly 

near the zero, but is very skewed to the right. 

5.2 The Quadratic Means for Seasonal components  
 

The seasonal components, 𝑠𝑡.𝑚  behave cyclically for t = 2014, 2015, 2016, 2017, 2018 such that,  𝑠2014.𝑚 =

𝑠2015.𝑚 = ⋯ = 𝑠2018.𝑚, for  𝑚 = 1,2, … ,12. Thus, it is not necessary to calculate the QM of seasonal 

components over years 2014 to 2018 – only one year and 12 seasonal components of it is enough (for 

example 2015.m, m = 1,…,12). Now the Quadratic Mean of seasonal components reduces to 

 𝑄𝑀: (𝑠𝑡.𝑚 = 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑖𝑛𝑑𝑒𝑥  𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑖𝑛 𝑙𝑜𝑔 − 𝑣𝑎𝑙𝑢𝑒𝑠) = 

(5) 𝑄𝑀: (𝑆𝑒𝑎𝑠𝑜𝑛, 𝐴𝑘, 𝑃𝑒𝑟𝑖𝑜𝑑) = 𝑄𝑀(𝑠2015.𝑚) = √
1

12
[∑ (𝑠2015.𝑚)

212
2015.𝑚=1 ] 

The seasonal components sum up to zero, that is  ∑ 𝑠𝑡.𝑚12
𝑡.𝑚=1 = 0, and it is easy to see, that the quadratic 

mean of seasonal components coincide with square root of variance of seasonal components. When 

seasonal components are small/large numbers around zero, then the Quadratic Mean of them is 

small/large number.  

The same analysis holds for the QM of the logarithmic seasonal indices in the value time series, as before 

(i.e. QM of CE). Also, as before, the distribution of 𝑄𝑀(𝑠𝑡.𝑚) lies always on the positive side of the real 

line, mostly near the origo, but is also very skewed to the right. Actually, the maximum values are about 

100 times larger than a typical (rather small) values, which means large skewness to the right. 

The Quadratic Mean of seasonal components is estimated with three similar steps as in the case of the QM 

of chain error.  

 

6 Empirical Results 

To get some sense in the analysis, we need to remove the extreme skewness of the QM variables. 

Therefore we have to take logarithms (here logs of base 10, log10) of both, the QM of ChainError and QM 

of seasonal components to reveal the relative changes in their values. This produces figures having double 

logarithmic coordinates, where the extreme variation is now condensed to a more manageable scale. After 

taking the logarithms, we need to perform the OLS regression of the logarithmic Quadratic Mean of 

ChainError according to the logarithmic Quadratic Mean of the seasonal component to show their mutual 

dependence. The OLS regression produces unbiased but inefficient estimators. This is not a problem since 

the results are already efficient enough for statistical purposes. 
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Figure 4: LogQM of ChainError (SV,𝐴𝑘,Period) and logQM of ChainError (T,Ak ,Period) according to logQM 

of the Seasonal component for the same Ak and Period.  

 

In figures 4 and 5, the seasonal component is displayed in the horizontal axis and the magnitude of Chain 

Error is shown in the vertical axis. Both axis are on log10-scale which makes it double-log10-scale. This 

makes the figures easier to interpret. Sato-Vartia (SV) is displayed with yellow dots and Törnqvist (T) with 

grey dots. The coefficients of determination and t-statistics are highly statistically significant. Below is the 

same picture with Törnqvist and Stuvel index formulas. 

Figure 5: LogQM of ChainError(SV,Ak,Period) and logQM of ChainError(T,Ak,Period ) according to logQM of 

Seasonal for the same 𝐴𝑘 and Period. Hollow points correspond to T. 
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In the figures 4 and 5 above, the x-scale observation varies from -2 to 2, which means that the largest 

original values of 𝑄𝑀: (𝑆𝑒𝑎𝑠𝑜𝑛, 𝐴𝑘, 𝑃𝑒𝑟𝑖𝑜𝑑) are roughly 70 times higher than the smallest ones. In the y-

scale, the observations vary roughly between log10-values from -2 to +2. This means large variation in the 

original scale: the large values of 𝑄𝑀: 𝐶𝐸(𝑙𝑜𝑔𝑀𝑉, 𝑃𝑒𝑟𝑖𝑜𝑑) are 1 000 times larger than the small ones.  

The two regressions, one for SV =Sato-Vartia and the other for T = Törnqvist, are almost identical in this 

double-logarithmic scale. They evidently make excellent sense with R^2-values 26% and 30%, which 

according to standard t-test are extremely significant statistically. These two figures essentially solves the 

question of our article: relative or logarithmic differences in the largeness of seasonal variation in the log-

values of time series in various 151 subgroups, clearly have average positive effects on the log-values of 

largeness of Chain Errors (= relative differences between index numbers produced by chain or, alternatively, 

by the base method). It does not matter, which of the excellent index number formula is used, because this 

choice affects results only slightly. As evidence of this in figure 4, Sato-Vartia and Törnqvist indices differ 

from each other only “slightly”, compared to the large differences between different subset Ak (our 151 

points in the figure).  

Note also the correct understanding of the ‘random variation’ around the regression lines. In the middle of 

the figure, roughly 50% of the points are both above and below the regression lines. This is just how 

according to the statistical theory should happen. What does this mean? Both the deviations in the log10-

scale are typically 2 log-units. This means 10-fold or 1/10-fold in the original scale. Observations 10 times 

above the average can be seen more clearly in the original scale while the 1/10-fold cannot be 

distinguished as they are too small or too near the x-axis to be seen. 

The large skewness of the distributions of these two quadratic means (from one subgroup Ak to another) is 

really extraordinary and requires carefully adjusted statistical and mathematical methods. No standard 

methods applied to their original scales are suitable or more clearly stated: standard methods such as 

regression analysis on their original absolute scales is clearly “forbidden”. However, statistical programs 

would do the senseless job of calculating such regressions without “explosion”. In Appendix 4 we show 

some examples of these “forbidden” estimation methods.  

 

7 Conclusions 
 
ILO manual (2004, p. 393-410) classifies commodities into normal, weakly and strongly seasonal ones and 
suggests different treatment for them. In this study, we do not make any distinction between 
commodities. As noticed, we derive cyclically behaving seasonal indices of values and log-differences of the 
MPIT’s (i.e. ChainErrors in log-scale) for all 151 coicop7 commodity groups without categorization of 
commodities into seasonal and non-seasonal ones.  
 
We derive by these two statistics – seasonal index and chain error – and the quadratic means of them. We 
show empirically with these quadratic means that relative or logarithmic differences in the largeness of 
seasonal variation in the log-values of time series in various 151 subgroups, clearly have average positive 
effects on the log-values of largeness of ChainErrors.  
 
Practically this means that all construction strategies of index series, which are based somehow on 
chaining2, should all be avoided or actually forbidden. For example, the simple chain strategy using weekly, 

                                                           
2  The actual reasonable number of these strategies for one year is somewhat less than 40 000 000. (The exact number 
for the 12 months of any year is 11! = 39 916 800.) 
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monthly and quarterly links should never be used. Similarly, the multilateral RYGEKS presented in Ivancic, 
Diewert & Fox (2011, p. 33 equation 9), is a method that cannot be recommended as actual method for 
official statistics. It is just ‘equation 9-type’ updating of index series simply by multiplication, that 
necessarily causes chain error. Compare also Vartia, Suoperä, Nieminen & Montonen, 2018.  
 
This study is based on our special strategy combined with excellent index number formulas as benchmark 
method. Our bilateral strategy uses previous year normalized to average month as its base period. This 
base period describes representative consumption (in the relevant year) and this holds all commodities – 
irrespective whether they are normal, weakly or strongly seasonal! Direct price-links of our strategy use 
only binary comparisons between base period of years length and all 12 observation months. Price-links 
should be based on “flexible basket approach” which correctly reflects consumers’ expenditure patterns in 
all binary comparisons. Artificial distinctions between normal, weakly and strongly seasonal commodities 
are not needed.  
 
Our natural and simple bilateral strategy has three important properties: 
 

(i) Our strategy removes all problems caused by chaining (i.e. multiplications needed in chain 
index). The only practical index series, that are totally free from ChainError CE, are simple 
versions of our strategy. 

(ii) Our strategy treats all months of every year equally. All other strategies contain at least one 
link implying a multiplication. And we have proved, that this multiplication necessarily causes 
(data contingent) ChainError. 
 

(iii) Our strategy treats weakly seasonal, strongly seasonal and non-seasonal commodities totally 
symmetrically. They all have their proper contributions to the overall CPI . 

 

 
This message, we want to share with you.  
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Appendix 1: Some important properties of the Quadratic Mean 
 

The basic properties of 𝑄𝑀(𝑥): 

1. If all the values of  𝑥 are non-negative, then 𝑄𝑀(𝑥) lies always between smallest and largest of 

them. 

2. For any non-negative multiplier c and even for any real (not necessarily non-negative) variable, the 

𝑄𝑀(𝑥) is homogeneous: For any 𝑐 ≥ 0, 𝑄𝑀(𝑐𝑥) = 𝑐𝑄𝑀(𝑥) . This applies trivially for 𝑐 = 0. This 

shows how change of units affect 𝑄𝑀(𝑥). Naturally, as you should see. 

3. The order in which the values of 𝑥 are expressed is irrelevant for 𝑄𝑀(𝑥). It is order independent or 

invariant in permutations 𝜓 of the vector 𝑥: 𝑄𝑀(𝜓𝑥) = 𝑄𝑀(𝑥). Such a function is also called as 

symmetric in (the components of) the variable 𝑥. 

4. For non-negative variables 𝑥, 𝑄𝑀(𝑥) is always greater or equal to the ordinary arithmetic mean 

𝐴𝑀(𝑥) =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 = 𝑥̅ expressed as 0 ≤ 𝑚𝑖𝑛(𝑥) ≤ 𝐴𝑀(𝑥) = 𝑥̅ ≤ 𝑄𝑀(𝑥) ≤ 𝑚𝑎𝑥(𝑥). All these 

numbers must be non-negative, though normally they all are positive. This inequality requires 

rather sophisticated mathematics in its proof. Without the non-negativity condition, no such 

equality holds, because e.g. 𝑚𝑎𝑥(𝑥) can be negative, while 0 ≤ 𝑄𝑀(𝑥) always by squaring the 

components. 

5. Perhaps a helpful relation, which hold also for any real variables 𝑥, whose components may attain 

also negative (or even only negative) values, is the following. Consider the MAV or Mean of Absolut 

Values denoted and defined by 𝑀𝐴𝑉(𝑥) =
1

𝑛
∑ |𝑥𝑖|𝑛

𝑖=1 , where |𝑥𝑖| = the non-negative absolute 

value of the possibly negative 𝑥𝑖. The inequality in 4 actually implies the following inequality 

between QM and MAV. For all real (positive, negative or null) components 𝑥𝑖 of the variable 𝑥 =

(𝑥1 , 𝑥2 , … , 𝑥𝑛 ), the following inequality always holds: 0 ≤ 𝑚𝑖𝑛(|𝑥|) ≤ 𝑀𝐴𝑉(𝑥) ≤ 𝑄𝑀(𝑥) ≤

𝑚𝑎𝑥(|𝑥|). This is very helpful when interpreting the positive values produced by 𝑄𝑀(𝑥) =

√
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 ≥ 0 .  

6. Note that the inputs 𝑥 = (𝑥1 , 𝑥2 , … , 𝑥𝑛 ) of 𝑀𝐴𝑉(𝑥) and 𝑄𝑀(𝑥) may well all be negative, 𝑥 𝜖 𝑅𝑛, 

unlike the vector of absolute values, for which |𝑥| = (|𝑥1|, |𝑥2|, , … , |𝑥𝑛|), 𝜖 𝑅+
𝑛,  The inputs in 

𝑀𝐴𝑉(𝑥) and 𝑄𝑀(𝑥)  are not the positive absolute values or the squares, but these vectors 𝑥 =

(𝑥1 , 𝑥2 , … , 𝑥𝑛 ) with possibly and usually negative components. This may sound odd, but an 

important point is that the absolute valuing and squaring happens within the functions 𝑀𝐴𝑉(𝑥) 

and 𝑄𝑀(𝑥). Although e.g. the equalities 𝑀𝐴𝑉(𝑥) = 𝑀𝐴𝑉(|𝑥|) and 𝑄𝑀(𝑥) = 𝑄𝑀(|𝑥|) hold 

trivially, it is conceptually important and is hidden in our notation, that both these functions use as 

their arguments the real (not the non-negative) arguments. Mathematically, they are functions of 

type: 𝑀𝐴𝑉: 𝑅𝑛 → 𝑅+
𝑛 and 𝑄𝑀: 𝑅𝑛 → 𝑅+

𝑛. Note how clumsy the alternative notation 𝑄𝑀(|𝑥|) =

√
1

𝑛
∑ (|𝑥𝑖|)2 𝑛

𝑖=1   would be. Notations like concepts should be as elegant and natural as possible. 

These are typical properties of all means, which shows the Quadratic Mean 𝑄𝑀(𝑥) deserves its name 

and it really is a mean, a special mean of its special type! Note, that our important paper Vartia & 

Suoperä (2018) based its results heavily on general moment means (of which QM is a special case) and 

on log-changes. 
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Quadratic Mean multiplied by √𝑛  is the Euclidean Length of a vector: 

 𝑙(𝑥) = √𝑛 ∗ 𝑄𝑀(𝑥)  = √∑ 𝑥𝑖
2𝑛

𝑖=1   

and its square is the (Pythagorean) square length of a vector, which is mathematically much easier to 

manipulate than its length: 

 𝑙2 (𝑥) = ∑ 𝑥𝑖
2𝑛

𝑖=1 = 𝑛 ∗ 𝑄𝑀(𝑥)2. 

This is how our 𝑄𝑀(𝑥) is connected not only to statistics and to general mathematic, but also to the 

geometry of the common n-dimensional Euclidean space. 
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Appendix 2: Current base-based strategy and formula applied for scanner data in Finland 
 

It is known fact that the value of a price index number depends on three things: data in question, the 

strategy used (base, chain or rather a mixture of them) and on the index number formula. These should fit 

together and give maximally reliable results. So we had to find the most suitable composition of the 

formula and strategy. 

Scanner-data opens up new possibilities to change traditional practices because: 

 In data having more than 100 000 homogenous commodities, quality errors virtually vanishes 

 Information concerning value and quantities are available up from daily or weekly level 

 Quantity and value information in addition to price information allows to use the excellent 

formulas 

o Different index number formulas (excellent and contingently biased) are easily compared 

 New strategies, not just pure base or pure chain strategies, may be used 

During recent years we tested various combinations of alternative construction strategies and the index 

number formulas.  

Based on the research work, international research reports and all our test results, following decisions were 

made and implemented to the production in the beginning of year 2019 concerning the scanner-data: 

 The Törnqvist index number formula is applied  

 The base strategy is used with the normalized average month of previous year as a base period  

 Only false registrations like missing or erroneous classification, erroneous product label, negative 

prices and quantities are filtered out 

 The price relation is calculated by each item identified with the GTIN-code  

 Elementary aggregates are composed by using the excellent index number formula. In Finland, the 

elementary aggregate level is by time, region and coicop-7.  

 The scanner-data elementary aggregates are integrated together with the traditionally collected 

and processed elementary aggregates using enterprise-specific weights 

 New items are taken into account at the update of the next base period.  

 Items that do not have price or quantity for year t  are deleted from calculations.  

 Annual chaining is used for merging together index series having different base periods 
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Appendix 3: Definition of the chain error in the case of Montgomery-Vartia 
 

We define the chain error as 

 𝐶𝐸(∆𝐵𝑎𝑠𝑒→𝐶ℎ𝑎𝑖𝑛𝑙𝑜𝑔𝑀𝑉, 𝐴𝑘 , 𝑃𝑒𝑟𝑖𝑜𝑑)𝑦𝑒𝑎𝑟(𝑡−1)
𝑦𝑒𝑎𝑟(𝑡).𝑚

=  log𝑀𝑉̃𝑦𝑒𝑎𝑟(𝑡−1)
𝑦𝑒𝑎𝑟(𝑡).𝑚

− 𝑙𝑜𝑔𝑀𝑉𝑦𝑒𝑎𝑟(𝑡−1)
𝑦𝑒𝑎𝑟(𝑡).𝑚

  

where the MV-base and chain indices are calculated for the commodities in subgroup 𝐴𝑘 (not denoted in 

the RHS symbol) and for every month 𝑚 = 1, … , 12 of every block of calendar 𝑦𝑒𝑎𝑟(𝑡), 𝑡 = 2015, … , 2018 

in our current 𝑃𝑒𝑟𝑖𝑜𝑑.  

In our recommended base strategy, which is also a special case of GEKS (see Vartia, Suoperä, Nieminen & 

Montonen, 2018), the base indices 𝑀𝑉0
𝑦𝑒𝑎𝑟.𝑚

  are comparing directly the months t of any year 𝑦𝑒𝑎𝑟(0). 𝑚 

with the average month of the previous year 𝑦𝑒𝑎𝑟(−1). Its links are, therefore, very simple: 

 𝑦𝑒𝑎𝑟(−1) →  𝑦𝑒𝑎𝑟(0). 𝑚 , 𝑚 = 1, … ,12 and annual links: 𝑦𝑒𝑎𝑟(𝑡) →  𝑦𝑒𝑎𝑟(𝑡 + 1) 

and the base index using MV-index is 

       𝑙𝑜𝑔𝑀𝑉𝑦𝑒𝑎𝑟(𝑡−1)
𝑦𝑒𝑎𝑟(𝑡).𝑚

  

for any 𝑚 = 1, … ,12 and any 𝑦𝑒𝑎𝑟(𝑡) where in our present data 𝑡 = 2015, … ,2018. The year 𝑡 = 2014 

must be used as a starting value in this recursive calculation. Annual changes are calculated naturally using 

only annual data 

 𝑙𝑜𝑔𝑀𝑉𝑦𝑒𝑎𝑟(𝑡−1)
𝑦𝑒𝑎𝑟(𝑡)

 and we set 𝑙𝑜𝑔𝑀𝑉𝑦𝑒𝑎𝑟(𝑡−1).12
𝑦𝑒𝑎𝑟(𝑡).1

= 𝑙𝑜𝑔𝑀𝑉𝑦𝑒𝑎𝑟(𝑡−1)
𝑦𝑒𝑎𝑟(𝑡)

+ 𝑙𝑜𝑔𝑀𝑉𝑦𝑒𝑎𝑟(𝑡)
𝑦𝑒𝑎𝑟(𝑡).1

. 

This means that annual data is treated like the 13th month, which raises the level of the next year indices to 

the appropriate level. This is best presented using a table. 

 

The whole index series is now defined by adding relevant log-changes: 

 𝑙𝑜𝑔𝑀𝑉0
𝑦𝑒𝑎𝑟(𝑡).𝑚

= ∑ 𝑙𝑜𝑔𝑀𝑉𝑦𝑒𝑎𝑟(𝑡−1)
𝑦𝑒𝑎𝑟(𝑡).𝑚2018

𝑡=2015 , with  

MV-index based on this intuitively evident strategy is in log-form 𝑙𝑜𝑔𝑀𝑉0
𝑦𝑒𝑎𝑟.𝑚

  , where the time variable 

𝑡 = 𝑦𝑒𝑎𝑟. 𝑚 gets values 𝑚 = 1, … ,12 within every calendar year-block of the 𝑃𝑒𝑟𝑖𝑜𝑑. In our data we have 

five calendar years 2014 - 2018, from which the year 2014 forms the initial point 0 of our calculations and 

the first month is 2015.1. For all the months of 2015 calculate 𝑙𝑜𝑔𝑀𝑉0
𝑦𝑒𝑎𝑟.𝑚

 and then the same procedure 

repeats for 2016.m. In these, the average month of 2015 forms the basis. We have produced in this way 

four annual blocks of 12 months, together 4*12 = 48 observations, where every month appears exactly 4 

times. For these 48 observations, we compare the outcomes of the base and chain indices, calculated by 

the same formula (in our example MV). 

On the other hand, the (pure) chain strategy is based on 4 blocks of 12 months, where for every year t we 

start from the comparison 

 𝑦𝑒𝑎𝑟(𝑡 − 1) →  𝑦𝑒𝑎𝑟(𝑡). 1 , which is the same as in the base strategy.  

The later links compare consecutive months, because log𝑀𝑉̃0
𝑦𝑒𝑎𝑟.𝑚

 is the pure chain index: 

𝑦𝑒𝑎𝑟(𝑡). (𝑚 − 1) →  𝑦𝑒𝑎𝑟(𝑡). 𝑚, 𝑚 = 2, … , 12.  

Then the year-block changes and we start anew using (9). For every year-block, we have for the chain index 
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 𝑀𝑉̃𝑦𝑒𝑎𝑟(𝑡−1)
𝑦𝑒𝑎𝑟(𝑡).1

= 𝑀𝑉𝑦𝑒𝑎𝑟(𝑡−1)
𝑦𝑒𝑎𝑟(𝑡).1

  and 𝑀𝑉̃𝑦𝑒𝑎𝑟(𝑡−1)
𝑦𝑒𝑎𝑟(𝑡).𝑚

= 𝑀𝑉̃𝑦𝑒𝑎𝑟(𝑡−1)
𝑦𝑒𝑎𝑟(𝑡).(𝑚−1)

𝑀𝑉𝑦𝑒𝑎𝑟(𝑡).(𝑚−1)
𝑦𝑒𝑎𝑟(𝑡).𝑚

,  

where 𝑚 = 2, … , 12. This is much easier in logarithms: 

          𝑙𝑜𝑔𝑀𝑉̃𝑦𝑒𝑎𝑟(𝑡−1)
𝑦𝑒𝑎𝑟(𝑡).1

= 𝑙𝑜𝑔𝑀𝑉𝑦𝑒𝑎𝑟(𝑡−1)
𝑦𝑒𝑎𝑟(𝑡).1

 and 

           𝑙𝑜𝑔𝑀𝑉̃
𝑦𝑒𝑎𝑟(𝑡−1)
𝑦𝑒𝑎𝑟(𝑡).𝑚

= 𝑙𝑜𝑔𝑀𝑉̃𝑦𝑒𝑎𝑟(𝑡−1)
𝑦𝑒𝑎𝑟(𝑡).(𝑚−1)

+ 𝑙𝑜𝑔𝑀𝑉𝑦𝑒𝑎𝑟(𝑡).(𝑚−1)
𝑦𝑒𝑎𝑟(𝑡).𝑚

    = 

= ∑ 𝑙𝑜𝑔𝑀𝑉𝑦𝑒𝑎𝑟(𝑡).(𝑘−1)
𝑦𝑒𝑎𝑟(𝑡).𝑘

𝑚−1

𝑘=2
+𝑙𝑜𝑔𝑀𝑉𝑦𝑒𝑎𝑟(𝑡).(𝑚−1)

𝑦𝑒𝑎𝑟(𝑡).𝑚
= 

  = ∑ 𝑙𝑜𝑔𝑀𝑉𝑦𝑒𝑎𝑟(𝑡).(𝑘−1)
𝑦𝑒𝑎𝑟(𝑡).𝑘𝑚

𝑘=2 . 

In logarithms, the pure chain strategy means just summing log-changes from the previous month, 

𝑙𝑜𝑔𝑀𝑉𝑦𝑒𝑎𝑟(𝑡).(𝑘−1)
𝑦𝑒𝑎𝑟(𝑡).𝑘

, where the index number formula is MV, but  expressed in logarithms 𝑙𝑜𝑔𝑀𝑉𝑚−1
𝑚 . 

Of course, within the months m of every calendar year. In the change of the year, start the strategy 

anew, by calculating the changes from the average month of the previous year. Note, that we do not 

propose the chain strategy, but the base strategy. 

Now we are ready to define the important concept Chain Error CE. It is simply the vector between the chain 

and base vectors: 

       ∆𝑙𝑜𝑔𝜋𝑡.𝑚 =  𝑙𝑜𝑔𝑀𝑉̃
𝑦𝑒𝑎𝑟(𝑡−1)
𝑦𝑒𝑎𝑟(𝑡).𝑚

− 𝑙𝑜𝑔𝑀𝑉𝑦𝑒𝑎𝑟(𝑡−1)
𝑦𝑒𝑎𝑟(𝑡).𝑚

 

𝐶𝐸(𝑙𝑜𝑔𝑀𝑉, 𝐴𝑘 , 𝑃𝑒𝑟𝑖𝑜𝑑) = (∆𝑙𝑜𝑔𝜋, 𝐴𝑘 , 𝑃𝑒𝑟𝑖𝑜𝑑), 

where also the background data (𝐴𝑘 , 𝑃𝑒𝑟𝑖𝑜𝑑) is included in the notation 
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Appendix 4: Some unsuitable estimation methods 

Here we show some examples of “forbidden” estimation methods, where the scale of variables are not 

admissible. The following figure is almost the same as in chapter 5, but now we calculate MS = Mean of 

Squares instead of the QM = Quadratic Means. Note the change in the scales (both logarithmic in this 

figure), where variation has increased by 1000. Also, there is a slight change in the regression (forced to go 

through origo in both), including its R^2 = 0,436. Not even R^2 is invariant in this transformation. This 

shows that there is something wrong in it. 

 

This is how the figure comes and looks if only the x-axis is logarithmic. 

 

And if both variables are in the original absolute scale. This is the space where the regression through the 

origo was calculated. The space is not at all the correct or proper space for meaningful or best calculations 

of regressions. 

y = 0,2952x
R² = 0,436
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MS of ChainError(MV, Ak, Period) 
vs MS of Seasonal component.

Both in logarithmic scales and scaled by 10^3
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Note the effect of using QM instead of MS. QM is better, easier to understand, in original units. 

 

 

In the figures, both the coordinate variables have been scaled by a large constant. For example, scaling 

could be by 10^3, so to get small integer values for the both scales. This corresponds to the usual practice, 

when small share of a disease, say 0,00013 in the population, is communicated to the public. It is 

transformed to 1,3 cases per 10 000 inhabitants.  
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MS of ChainError(MV, Ak, Period) 
vs MS of Seasonal component.

Both in arithmetic scales and scaled by 10^3
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