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1. Introduction 
 

We shall use index number theory only to the extent that helps the construction of CPI in statistical offices, 

while new complete micro data-sets emerge for commodities. We mean by the complete micro data new 

data-sets, where both prices and quantities are registered for all homogenous commodities in some market 

and for all periods. This is often referred as scanner data and is part of Big Data. Complete micro data is 

different to ´Billion Prices Project´ used in his CPI by Cavallo and Rigobon (2016) of MIT, because their 

data is based on vast number of web-prices only (no quantity information). Inclusion of complete micro data 

in CPI’s will greatly change and simplify the current practices based on Laspeyres formula and complicated 

rules for elementary aggregates. When the number of commodities increases 50-fold and also the quantities 

are observed, the index number calculations must change accordingly. 

                                                      
1 We thank for Eugen Koev, Heikki Pursiainen and Timo Koskimäki for their comments and constructive criticism. 
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The price and quantity indices are the macro equivalents or aggregations of the price and quantity relatives. 

A price index is roughly speaking some average of the price relatives, 𝑝𝑖
𝑡/0

= 𝑝𝑖
𝑡/𝑝𝑖

0, relevant to an economic 

unit, say for example consumer. Normally a price index is some well-known weighted average, like 

arithmetic A, geometric G or harmonic H average, and the weights 𝑤𝑖 are value shares based on either base 

or observation periods. It is well-known that A > G > H always (“a three-tined fork of index numbers”) when 

price relatives vary and their relative differences are approximately equal to half of a variance of relative 

changes in prices. This result is based on properties of moment means and derived carefully in Vartia (1978) 

and it contained the critique of Fisher (1922). The main mistakes of Fisher were assuming that Laspeyres and 

Paasche indices were almost equal and that variances of price and quantity log-changes are essentially the 

same, which are true only accidentally. The corrected theory is presented in the paper in a more readable and 

general form than in Vartia (1978). This is a joint work of the authors and continues the co-work of 

University of Helsinki and Statistics Finland related more generally to aggregation of behavioral functions, 

see Vartia (2008) and Suoperä and Vartia (2011).  

 

Unfortunately, the selection of the index formulas is quite rarely analyzed purely in terms of the descriptive 

index number theory. That is, the concept of bias of an index number formula has not been examined 

accurately, not even in our previous papers. We correct this drawback in chapter 8. 

 

In this paper, we analyze most popular index number formulas and we show how their numerical values 

depend on the index formula. We show that index number formulas can be classified to formulas having 

upward or downward bias for small changes compared to index formulas, that must be classified as 

‘unbiased’ according to the index number theory. This analysis is carried out for small changes both in log 

prices and log quantities, and it leads to exact and definite concepts there. The concept of bias vs. 

unbiasedness is developed carefully in chapter 7.  Five first chapters consider the index number problem and 

CPI on a general level. Appendices consider more technical matters. 

 

One may ask, what makes the index number theory important. Our answer is that it tries to solve the Arrow´s 

Paradox (concerning the incompatibility of intuitive rules of social decisions) in a quantitative way. The 

quantity index of consumption (calculated by a precision formula) is constructed to measure the welfare 

based on consumption in a quantitative way, see Vartia-Weymark (1982) and Vartia (1983). Economists 

agree to a large extend that it succeeds in its goal. Although there does not exist an ideal (or the only correct) 

way to measure welfare, it can be measured accurately enough in many important situations. If we agree the 

set of precision formulas, the welfare change is measured with practical accuracy. Not exactly, but almost. 

The paper Vartia (1980) takes into account also the saving decisions to the consumer behavior. 

 

In our treatment, we are able to correct some misconceptions held since Fisher (1922), which resulted from 

his faulty generalizations of his price-quantity data. For example, Laspeyres and Paasche cannot be 

considered generally even roughly equal. However, Laspeyres formula has been taken as a practical solution 

in CPI´s, because quantity information is available only for the base period (based on consumer surveys). 

Even more dramatically a new observation is, that so-called factor antithesis formulas of the basic price 

indices and their rectified versions become useless, if the variance of the changes in log-quantities is many 

times larger than the similar variance of prices. This is a probable situation in future very detailed “Big 

Data”. This case was ignored in Fisher´s authoritative view, where variations in log-changes in prices and 

quantities were essentially equal.  

 

On the other hand, time antithesis and its use in rectifying formulas remains an excellent idea of Fisher. To 

our knowledge, this criticism towards “the bible of index numbers” is a new contribution. 

 

The mathematical methods, that we are going to use, are based on well-known references, Fisher (1922), 

Törnqvist (1936), Stuvel (1957, 1989), Diewert (1976,1978), Vartia (1976, 1978, 1983) and Vartia & Vartia 

(1984), Törnqvist-Vartia-Vartia (1985). We base our index number theory on basic algebra or arithmetic. No 

questionable assumptions of “economic behavior” say from consumer theory are needed nor used in our 

derivations. Economic theorization has a tendency of increasing the list of desired properties of indices, 

which is usually even too long in the beginning. It is well-known and proved several times, that there cannot 
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be any index numbers satisfying even certain short and intuitively plausible lists of properties or desiderata. 

This reminds us of the Arrows paradox in macro decision making. For a comprehensive treatment in index 

number methods within this approach, see Balk (1995). Hansen-Lucas (1983) documents a quantitative 

comparison of many important index formulas in the foreign trade of Egypt from 1885-1961. 

 

Our target readers are the index number specialist and constructors in the national statistical offices. We 

concentrate on those properties of indices, which in our opinion are relevant to these specialists in statistical 

offices, while they are formulating the new emerging methodology of index construction. 

 

 

2. Complete micro data and its transformations 
 

We verify our mathematical results by numerical analysis. The data used, is well edited drugs data (i.e. self-

care drugs) uphold by Pharmaceutical Information Centre Ltd, Finland. It is complete micro data in the sense 

that it contains all prices and quantities (aggregated for the whole country here) for all homogeneous 

commodities and periods, which are months in the paper.  

 

Instead of couple of dozens product varieties typically included into a CPI sub-index, the data we use 

contains complete price and quantity data of all periods (here all months during 2013-2016) for about 5000 

drugs that require prescription by a medical professional and about 500 self-care drugs (so called VNR-

commodities). These are packages of drugs, that have a constant quality over time. This means that problems 

of quality change do not appear in this data set.  Because the actual prices paid by the consumer for 

prescription drugs are somewhat complicated because of the sickness insurance schemes applied in Finland, 

we will use only the data on self-care drugs here. It will form our test data, which we assume to simulate 

well (as basic data in CPI) other similar forthcoming complete micro data-sets. We do not consider the 

peculiarities of this drug data in the paper. In it the prices are rationed and the same in all shops. We consider 

only features, which we consider to generalize to other complete micro data. 

 

We concentrate on results and proposals that are applicable for similar CPI data having up to 100 times 

larger sets of commodities than in the current national CPI practices. New and disappearing commodities can 

also be treated in a systematic and simple way and quality corrections are unnecessary, because the micro 

commodities are homogeneous. In the new practices, complete price and quantity data appears to become 

available of practically all commodities in the retail market. We believe that using these new data sets and 

improved index number methodology, reliability and accuracy of CPI production will be raised to a new 

level. 
 
In the index number calculations, we split the data in two by five different ways according to how the values 

of the VNR-commodities have changed between base and observation periods. In the first splitting in two, 

one part of data 10S consists of the VNR-commodities, whose values have increased or declined more than 

10 times and another part 10N is the complement of 10S. In the second split in two the limit is 5, in third 3, 

in fourth 2 and in the last one 1.33 times increase or decline of the values.  

 

We comment here only the calculations concerning 5N (N for Normal commodities) and 5S (S for Special). 

The subgroup 5S includes commodities having large relative changes in values (up by multiple 5 or down by 

1/5) and thus in quantity or/and in prices. On the other hand, in 5N the values of the commodities stay 

relatively constant. We show, what kind of effects the special parts 10S, 5S (reported here), 3S, 2S, 1.333S 

of the data cause to index number calculations. In fact, we shall show some dramatic effects in them. They 

are so surprising, that one needs some time to digest their consequences.  
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3. Basic concepts and notation for index numbers 
 

We represent the basic concepts of index numbers as an easy reference for experts in statistical offices. Our 

notation for the index number calculations is the following: 

 

Commodities:    𝑎1, 𝑎2, … , 𝑎𝑛 are here self-care drugs and their number n is roughly 500. 

Time periods:  t = 0, 1, 2, … are the compared situations (only two in binary comparisons). 

Prices:  𝑝𝑖
𝑡 is the unit price of 𝑎𝑖 in period t. 

Quantities:  𝑞𝑖
𝑡 is the quantity of 𝑎𝑖 in period t. 

Values:  𝑣𝑖
𝑡 = 𝑝𝑖

𝑡𝑞𝑖
𝑡 is the value of 𝑎𝑖 in period t. 

Total value:  𝑉𝑡 = ∑ 𝑣𝑖
𝑡 is the total value of all the commodities. 

Total value ratio: 𝑉𝑡/0 =  𝑉𝑡/ 𝑉0 is the total value ratio from period 0 to t. 

 

Price relatives: 𝑝𝑖
𝑡/0

= 𝑝𝑖
𝑡/𝑝𝑖

0 is the price relative of 𝑎𝑖 from period 0 to t.  

Quantity relatives: 𝑞𝑖
𝑡/0

= 𝑞𝑖
𝑡/𝑞𝑖

0 is the quantity relative of 𝑎𝑖 from period 0 to t.  

Value relatives: 𝑣𝑖
𝑡/0

= 𝑣𝑖
𝑡/𝑣𝑖

0 is the value relative of 𝑎𝑖 from period 0 to t. 

Value shares:  𝑤𝑖
𝑡 = 𝑣𝑖

𝑡/ ∑ 𝑣𝑖
𝑡

𝑖  is the value share of 𝑎𝑖 in period t. 

 

 

This will be the data, on which the index number calculations are based. Corresponding n-vects are denoted 

by the same symbol without commodity sub-index:  

 

(1)  𝑝𝑡 ,  𝑞𝑡,  𝑣𝑡 ,  𝑝𝑡/0,  𝑞𝑡/0, 𝑣𝑡/0, 𝑤𝑡 

 

 

This looks much easier: prices, quantities, values. etc.! We assume that all prices and quantities are strictly 

positive (contain no zeros). This implies that all values, price, quantity and value relatives and values shares 

are also well-defined and strictly positive. Especially both relatives 𝑝𝑡/0 = 𝑝𝑖
𝑡/𝑝𝑖

0 and 𝑝0/𝑡 = 𝑝𝑖
0/𝑝𝑖

𝑡 are 

defined (no division by zero). This assumption will be relaxed when we later discuss new and disappearing 

commodities. 

 

Moment mean of order 𝛼 (any real number) of strictly positive x-values and strictly positive weights 𝑣 is 

defined as follows: 

 

(2)  𝑀(𝛼)(𝑥, 𝑣) = {
(∑ 𝑣𝑖𝑥𝑖

𝛼/ ∑ 𝑣𝑖)
1/𝛼

, 𝑖𝑓 𝛼 ≠ 0

∏ 𝑥
𝑖

𝑣𝑖/ ∑ 𝑣𝑗 = 𝐺(𝑥, 𝑣) ,   𝑖𝑓 𝛼 = 0
 

  

This will be a crucial part of our theory, how index numbers deviate from each other. The limit of the 

moment mean when 𝛼 approaches zero is the weighted geometric mean 𝐺(𝑥, 𝑣). Moment mean of non-equal 

arguments x is a strictly increasing continuous function of parameter 𝛼 from 𝑀(−∞)(𝑥, 𝑣) = min (𝑥) to 

𝑀(∞)(𝑥, 𝑣) = max (𝑥). For the important small values of 𝛼 the relative change of the moment mean satisfies 

 

(3)  𝑙𝑜𝑔 (
𝑀(𝛼)(𝑥,𝑣)

𝑀(0)(𝑥,𝑣)
) =  

𝛼

2
𝑠2(𝑙𝑜𝑔𝑥, 𝑣) +

𝛼2

6
𝑚3(𝑙𝑜𝑔𝑥, 𝑣) + ⋯ 

 

where the first two terms of the Taylor series (in respect to 𝛼) contains the v-weighted variance and third 

central moment in the 𝑙𝑜𝑔𝑥-scale. This expansion is very accurate for small variances in 𝑙𝑜𝑔𝑥. The variance 

term dominates and gives alone for all moderate values of x and v and 𝛼 the correct magnitude of the change.  

The mathematics is so elegant, that we derive the relative deviation of the price index 𝑀(𝛼)(𝑝1/0, 𝑤0) from 

for the price index 𝑃 = 𝑀(0)(𝑝1/0, 𝑤0) = exp (∑ 𝑤𝑖
0∆𝑙𝑜𝑔𝑝𝑖) called Log-Laspeyres l later. Define 𝑝̇𝑖 =

𝑙𝑜𝑔(𝑝𝑖
1/0

/𝑃) = ∆𝑙𝑜𝑔𝑝𝑖 − 𝑙𝑜𝑔𝑃 , the log-deviations from the mean. 
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 𝑙𝑜𝑔 (
𝑀(𝛼)(𝑝1/0,𝑤0)

𝑀(0)(𝑝1/0,𝑤0)
) = 𝑙𝑜𝑔𝑀(𝛼) (𝑝1/0

𝑃
, 𝑤0) = 𝑙𝑜𝑔𝑀(𝛼)(𝑒𝑝̇, 𝑤0) = 1

𝛼
𝑙𝑜𝑔 ∑ 𝑤𝑖

0 𝑒𝛼𝑝̇𝑖 = 

 = 1

𝛼
𝑙𝑜𝑔 ∑ 𝑤𝑖

0(1 + 𝛼𝑝̇𝑖 + 1

2!
(𝛼𝑝̇𝑖)

2 + 1

3!
(𝛼𝑝̇𝑖)

3 + ⋯ ) = 

(4) = 1

𝛼
log (∑ 𝑤𝑖

0 + 𝛼 ∑ 𝑤𝑖
0𝑝̇𝑖 + 𝛼2

2!
∑ 𝑤𝑖

0𝑝̇𝑖
2 + 𝛼3

3!
∑ 𝑤𝑖

0𝑝̇𝑖
3 + ⋯ ) 

 = 1

𝛼
log (1 + 0 + 𝛼2

2
𝑎2(𝑝̇, 𝑤0) + 𝛼3

6
∑ 𝑤𝑖

0𝑝̇𝑖
3 + ⋯ ) 

 = 𝛼

2
𝑎2(𝑝̇, 𝑤0) + 𝛼2

6
𝑎3(𝑝̇, 𝑤0) + ⋯  where 𝑝̇𝑖 = 𝑙𝑜𝑔

𝑝1/0

𝑃
= ∆𝑙𝑜𝑔𝑝𝑖 − 𝑙𝑜𝑔𝑃 

 = 𝛼

2
𝑚2(𝑝̈, 𝑤0) + 𝛼2

6
𝑚3(𝑝̈, 𝑤0) + ⋯  where 𝑝̈𝑖 = 𝑙𝑜𝑔𝑝1/0 = ∆𝑙𝑜𝑔𝑝

𝑖
. 

 

In this derivation, the log-deviations 𝑝̇𝑖 = 𝑙𝑜𝑔
𝑝1/0

𝑃
 and their zero mean ∑ 𝑤𝑖

0𝑝̇𝑖 = 𝑤0 ∙ 𝑝̇ = 0 are the essential 

points. Here 𝑎2(𝑝̇, 𝑤0) is the second origo-moment and  𝑚2(𝑝̈, 𝑤0) the second central moment. Because 

trivially (but surprisingly, because of the zero mean of 𝑝̇) 𝑎2(𝑝̇, 𝑤0) = 𝑚2(𝑝̈, 𝑤0) = 𝑠2(𝑝̈, 𝑤0) =

𝑠2(𝑝̇, 𝑤0) = 𝑚2(𝑝̇, 𝑤0), it is possible to name this crucial parameter in several different ways. This is first  

confusing. 

 

The derivation is closely related to the moment generating function 𝑀(𝑝̇, 𝑡) = 𝐸𝑒𝑡𝑝̇ = ∑ 𝑤𝑖
0 𝑒𝑡𝑝̇𝑖 of the log-

deviation variable 𝑝̇, considered as a discrete random variable with probabilities 𝑝 = 𝑤0. Its logarithm is the 

cumulant generating function 𝐾(𝑝̇, 𝑡) = 𝑙𝑜𝑔𝑀(𝑝̇, 𝑡) = 𝑙𝑜𝑔𝐸𝑒𝑡𝑝̇ = 𝑙𝑜𝑔 ∑ 𝑤𝑖
0 𝑒𝑡𝑝̇𝑖, which appears above in 

the form 1

𝛼
𝐾(𝑝̇, 𝛼) = 𝑙𝑜𝑔 ∑ 𝑤𝑖

0 𝑒  𝛼𝑝̇𝑖 and the coefficients of its Taylor series gives the sequence of cumulants. 

The first cumulant is the mean, second the variance and third the third central moment, as above. Higher 

cumulants are combination of central moments. 
 

Arithmetic, geometric and harmonic means are moment means with parameter 1, 0 and -1, respectively. For 

small changes, their relative differences from the geometric mean equal half of the variance in the log-

argument. For simplicity, we ignore here the third moment term in the analysis of index numbers, see 

however Vartia (1978). 

 

We represent in a condensed form the operations or modifications of any index number formula in the 

following table. Time Antithesis TA and Fact Antithesis FA are basic concepts in Fisher´s (1922) 

methodology and we shall review them critically in our paper. 

 

Table 1:  Modifications of index numbers. Geometric mean as an example 
 

(1) (2) (3)  (4) (5) 

Price Index 

Number Formula f 

f as a Quantity 

Index Number 

TA of f FA of f CoF of f 

𝑓𝑝 𝑓𝑞 𝑇𝐴(𝑓𝑝) 𝐹𝐴(𝑓𝑝) 𝐶𝑜𝐹( 𝑓) 

𝑓 (
𝑝1 𝑞1

𝑝0 𝑞0) 𝑓 (
𝑞1 𝑝1

𝑞0 𝑝0) 1/𝑓 (
𝑝0 𝑞0

𝑝1 𝑞1) 𝑉1/0/𝑓 (
𝑞1 𝑝1

𝑞0 𝑝0) 𝑉1/0/𝑓 (
𝑝1 𝑞1

𝑝0 𝑞0) 

𝑙𝑝 = ∏(
𝑝𝑖

1

𝑝𝑖
0)𝑤𝑖

0
 𝑙𝑞 = ∏(

𝑞𝑖
1

𝑞𝑖
0)𝑤𝑖

0
 𝑝𝑝 = ∏(

𝑝𝑖
1

𝑝𝑖
0)𝑤𝑖

1
 𝑉1/0/ ∏(

𝑞𝑖
1

𝑞𝑖
0)𝑤𝑖

0
 𝑉1/0/ ∏(

𝑝𝑖
1

𝑝𝑖
0)𝑤𝑖

0
 

 

We have presented so-called Log-Laspeyres formula 𝑙𝑝 as an example of these modifications. Usually, it is 

represented in logarithmic form: 𝑙𝑜𝑔𝑙𝑝 = ∑ 𝑤𝑖
0log (

𝑝𝑖
1

𝑝𝑖
0). We just mention for later use two important 

modifications.  
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(5) The TA-rectification of f =√𝑓 (
𝑝1 𝑞1

𝑝0 𝑞0) /𝑓 (
𝑝0 𝑞0

𝑝1 𝑞1) = Cross (geometric mean) with its TA and  

(6) the FA-rectification of f =√𝑓 (
𝑝1 𝑞1

𝑝0 𝑞0) 𝑉1/0/𝑓 (
𝑞1 𝑝1

𝑞0 𝑝0) = Cross (geometric mean) ) with its FA.  

Starting from 𝑙𝑜𝑔𝑙𝑝, we derive as its TA-rectification the Törnqvist index 𝑙𝑜𝑔𝑡𝑝 = ∑ 1

2
(𝑤𝑖

0 + 𝑤𝑖
1)log (

𝑝𝑖
1

𝑝𝑖
0) and 

as its FA-rectification the index 𝑙𝑜𝑔𝑃 =
1

2
(∑ 𝑤𝑖

0log (
𝑝𝑖

1

𝑝𝑖
0) + 𝑙𝑜𝑔

𝑉1

𝑉0 − ∑ 𝑤𝑖
0log (

𝑞𝑖
1

𝑞𝑖
0)). We shall show, that the 

first is unbiased and superlative in a specific sense, but the latter is biased unless the variances of log-

changes in prices and quantities happen to be equal. Therefore, Fisher (1922) was in error while considering 

FA-rectification as a generally valid and effective operation. This is a new result. 

 

4. Laspeyres, Paasche and Palgrave 
 

These are the main building blocks in in number theory. We show their different representations and also try 

to correct some common misunderstandings. Etienne Laspeyres and Herman Paasche were German 

economists measuring price changes in Hamburg around 1865 using slightly different methods. Their 

proposals are the two most important basic indices. As an introduction, we derive for Laspeyres and Paasche 

price indices their representations as weighted averages. For Laspeyres index this is simple: 

 

(7)  𝐿 =  𝐿1/0 =
𝑝1∙𝑞0

𝑝0∙𝑞0 =
∑ 𝑝𝑖

1𝑞𝑖
0

∑ 𝑝𝑖
0𝑞𝑖

0,
=

∑
𝑝𝑖

1

𝑝𝑖
0 𝑝𝑖

0𝑞𝑖
0

∑ 𝑣𝑖
0  = 

∑ 𝑝𝑖
1/0

𝑣𝑖
0

∑ 𝑣𝑖
0,

= ∑ 𝑤𝑖
0 𝑝𝑖

1/0
. 

 

We have applied the inner product notation such as 𝑝1 ∙ 𝑞0 = ∑ 𝑝𝑖
1𝑞𝑖

0  and  𝑝0 ∙ 𝑞0 = ∑ 𝑝𝑖
0𝑞𝑖

0, which is easier 

to read, because it removes unnecessary summation symbols and product sub-indices. By definition, 

Laspeyres price index is the cost relative (𝑝1 ∙ 𝑞0 divided by 𝑝0 ∙ 𝑞0) of the old quantity basket 𝑞0. It can also 

be calculated as a weighted arithmetic average of the price relatives, where the weights are old values shares. 

This is called the practical way of calculating Laspeyres.  

 

It is applied in national CPI´s from the level of its commodity groups by taking 𝑝𝑖
1/0

 as the value of the price 

index 𝑃𝑖
1/0

 of the commodity group and continuing similarly from these. For commodity groups, physical 

quantities are not available any more, contrary to elementary aggregates where they usually exist. This 

procedure is based on the consistent aggregation property Laspeyres formula. Much of common practice in 

official statistics depends on it, as Pursiainen (2005) stresses. 

 
For the Paasche price index the derivation is similar but more complicated. 

 

(8) 𝑃𝑎 =  𝑃𝑎1/0 =  
𝑝1∙𝑞1

𝑝0∙𝑞1 =
∑ 𝑝𝑖

1𝑞𝑖
1

∑ 𝑝𝑖
0𝑞𝑖

1 =
∑ 𝑝𝑖

1𝑞𝑖
1

∑
𝑝𝑖

0

𝑝𝑖
1𝑝𝑖

1𝑞𝑖
1

=  
∑ 𝑣𝑖

1

∑ 𝑝𝑖
0/1

𝑣𝑖
1

=  
1

∑ 𝑤𝑖
1𝑝𝑖

0/1   

 
By definition, Paasche price index is the cost relative (𝑝1 ∙ 𝑞1 divided by 𝑝0 ∙ 𝑞1) of the new quantity basket  

𝑞1. It can also be calculated as a weighted harmonic average of the price relatives, where the weights are 

new values shares. In practice, this is the way it is calculated. It can be used only if the new value shares are 

known, which is a strong condition. In our complete micro data on drugs, also new quantities are known and 

new values shares can be calculated. This holds for any scanner-type new micro data and it changes strongly 

the whole methodology of CPI calculation. 
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Note also that Laspeyres and Paasche are based on the same basket idea of calculation: L is based on the old 

basket of goods 𝑞0, while Pa uses the new basket 𝑞1. Paasche may be defined actually by Laspeyres 

calculated in the reverse direction 1 → 0, i.e. it is evidently the inverse of  

 

(9) 𝐿0/1 =
𝑝0∙𝑞1

𝑝1∙𝑞1. 

 

This dependence means actually, that Paasche is the Time Antithesis of Laspeyres, 𝑃𝑎 = 𝑇𝐴(𝐿) . This 

concepts is introduced in detail in chapter 8. 

 

An elementary but quite common mistake is to imagine, that the Paasche price index as a weighted 

arithmetic average of the price relatives weighted by new values shares. This is not Paasche, but the index 

number proposed by an economist Palgrave in 1868. It does not have a quantity basket interpretation, like 

Laspeyres and Paasche. Palgrave has two doses of upward bias compared to Paasche. Only if Paasche is 

strongly biased down, Palgrave index as such is applicable. As shown by Vartia-Vartia (1978) an average of 

Laspeyres and Palgrave is always biased upwards compared to Fisher (geometric average of Laspeyres and 

Paasche) or to other unbiased formulas.  

 

This kind of error was made e.g. in the Bank Finland in the choice of the formula in the Bank of Finland 

Currency Index, see Vartia-Vartia (1978). Economists in the Bank of Finland evidently thought, that they 

calculated Edgeworth index. It exaggerated the revaluation in Finnish currency by the amount of the bias of 

the index. The currency index increased more than was the actual case. The bias and claimed unintentional 

revaluation of Finnish mark had increased from 1974 to 1984 to 2.4%. Concretely, a corresponding 

devaluation of 2.4% in 1984 would have been needed to eliminate the discrepancy for 1984. This large 

devaluation (which would have corrected the actual situation to the officially declared one) would have 

meant an extra income of roughly FIM 1500 million (250 million euros in 1984 prices) only in 1984 to the 

export sector. Thus, the export sector of the economy was officially claimed to get systematically more 

foreign currency than they actually got. Official data did not correctly describe the reality. As this example 

shows, biases and other weaknesses of index calculations are not unimportant details in the macro-economic 

analysis. The formulas and weights must be chosen correctly in official indices. 

 

 

5. Three base and observation period weighted means of price relatives 
 

Irving Fisher (1922) visualized the index numbers as forks containing a certain number of tines. This is an 

important visualization of differences between various indices and other choices of calculation. In his data, 

various index numbers happened to fall into five quite separate groups or “tines”, which formed “the five-

tined fork”, a kind of quantum theory of index numbers. Much of this was accidental and resulted because L 

and P happened to be near each other, which is not generally or even usually true. Fisher regarded these 

formulas as “very good”, which was a mistake as will be shown below. Fisher´s “Five-tined Fork” with 

doses of bias (or quanta) = 0, ±1, ±2 as a realistic “quantum theory” of index numbers was criticized already 

in Vartia (1978), but it did not raise much attention. The concepts of bias of an index number was defined for 

the first time along these lines in Vartia (1978) and Vartia-Vartia (1984) as a small deviation concept, but 

evidently too loosely. Also, this point was bypassed unnoticed among index number literature. Probably it 

was not understood, how it differed from the Fisher´s concept of bias and unbiasedness. These concepts are 

now presented here in chapter 7 and in Appendix 1 once again, but more accurately. 

 

Laspeyres has been regarded as the “correct prototype” of all index calculations all over the world both as a 

price and quantity index because of its simplicity and easy applicability and despite of all sorts of opposing 

evidence on its upward bias and asymmetry.  

 

Fisher (1922) made some wrong generalizations on these matters. Now almost 100 years later, it is time to 

build a corrected index number theory on the following foundations: how various choices on averaging and 

weighting affect index numbers and where the unbiased indices situate. Now the analysis can be based on 
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modern mathematics (moment means, approximations, function theory, knowledge of new “superlative” or 

“ideal” index numbers), large data sets and computing power. We must, however, appreciate here Fisher´s 

genius, as his concepts and classifications still after 100 years govern the development of index theory. 

 

Next, we define three price indices based on arithmetic, geometric and harmonic means of price relatives and 

old value shares. The three-tined fork having base period weights contains the following indices (three 

weighted averages A, G and H):   
 

𝐿 = 𝐴(𝑝1/0, 𝑤0) = ∑ 𝑤𝑖
0 𝑝𝑖

1/0
 =

𝑝1∙𝑞0

𝑝0∙𝑞0  “Laspeyres” 

 

(10) 𝑙 = 𝐺(𝑝1/0, 𝑤0) = ∏(
𝑝𝑖

1

𝑝𝑖
0)𝑤𝑖

0
= 𝑒𝑥𝑝 (∑ 𝑤𝑖

0 𝑙𝑜𝑔𝑝𝑖
1/0

) “Log-Laspeyres” 

 

𝐿ℎ = 𝐻(𝑝1/0 , 𝑤0) = 1/ ∑ 𝑤𝑖
0 𝑝𝑖

0/1
  “Harmonic Laspeyres” 

 

 

We also use the upper double-dot to denote log-change, as in 𝑝𝑖̈ = ∆𝑙𝑜𝑔𝑝𝑖 = log (𝑝𝑖
1 𝑝𝑖

0)⁄  and similarly for 

quantities 𝑞𝑖̈ and values 𝑣𝑖̈. Logarithms are natural, of course, see Törnqvist-Vartia-Vartia (1985). Single 

upper dot is reserved for log-deviations from the mean as in Vartia (1978), e.g. 𝑝𝑖̇ = ∆𝑙𝑜𝑔𝑝𝑖 − 𝑙𝑜𝑔𝑃 = 𝑝𝑖̈ −
𝑙𝑜𝑔𝑃. 

 

More symmetrically written 𝑙𝑜𝑔𝑙 = ∑ 𝑤𝑖
0log (𝑝𝑖

1 𝑝𝑖
0)⁄ = ∑ 𝑤𝑖

0 𝑝𝑖̈ = 𝑙 ̈. Using (3-4) for moments means, the 

relative differences of 𝐿 = 𝑀(1)(𝑝1/0, 𝑤0) and of 𝐿ℎ = 𝑀(−1)(𝑝1/0, 𝑤0) from of 𝑙 = 𝑀(0)(𝑝1/0, 𝑤0) are 

approximately half of the “old” variance 𝑠0
2(𝑝̇) = 𝑠2(𝑝̇, 𝑤0) in the deviations of log-prices2. We call 𝑠0

2(𝑝̇) 

shortly the old variance of  𝑝̇ .  

 

We have always 𝑙𝑜𝑔𝐿 > 𝑙𝑜𝑔𝑙 >  𝑙𝑜𝑔𝐿ℎ for non-equal price relatives or 𝑝̇. More accurately, we have 𝑙𝑜𝑔𝐿 =
𝑎 + ∆0 > 𝑎 > 𝑙𝑜𝑔𝐿ℎ = 𝑎 − ∆0, where 𝑎 = 𝑙𝑜𝑔𝑙 𝑎𝑛𝑑 ∆0= 1

2
𝑠0

2(𝑝̇) . 

 

The three-tined fork with the observation period weights contains also three weighted averages: 

 

 

𝑃𝑙 = 𝐴(𝑝1/0, 𝑤1) = ∑ 𝑤𝑖
1𝑝𝑖

1/0
  “Palgrave” 

 

(11) 𝑝 = 𝐺(𝑝1/0, 𝑤1) = ∏(
𝑝𝑖

1

𝑝𝑖
0)𝑤𝑖

1
= 𝑒𝑥𝑝 (∑ 𝑤𝑖

1 𝑙𝑜𝑔𝑝𝑖
1/0

) “Log-Paasche3” 

 

𝑃𝑎 = 𝐻(𝑝1/0, 𝑤1) = 1/ ∑ 𝑤𝑖
1 𝑝𝑖

0/1
=  𝑝1∙𝑞1

𝑝0∙𝑞1 “Paasche” 

  

More symmetrically written 𝑙𝑜𝑔𝑝 = ∑ 𝑤𝑖
1log (𝑝𝑖

1 𝑝𝑖
0)⁄ = ∑ 𝑤𝑖

1 𝑝𝑖̈ = 𝑝̈ . The logarithmic differences of Pl and 

Pa from p are half of the “new” variance 𝑠1
2(𝑝̇) = 𝑠2(𝑝̇, 𝑤1) of the changes of log-prices 𝑝̇ = ∆𝑙𝑜𝑔𝑝 . We 

call 𝑠1
2(𝑝̇) shortly the new variance of 𝑝̇.  

 

We have always 𝑙𝑜𝑔𝑃𝑙 > 𝑙𝑜𝑔𝑝 >  𝑙𝑜𝑔𝑃𝑎 for non-equal price relatives or 𝑝̇. More accurately, we have 

𝑙𝑜𝑔𝑃𝑙 = 𝑏 + ∆1 > 𝑏 >  𝑙𝑜𝑔𝑃𝑎 = 𝑏 − ∆1, where 𝑏 = 𝑙𝑜𝑔𝑝 𝑎𝑛𝑑 ∆1= 1

2
𝑠1

2(𝑝̇) . 

 

                                                      
2 The same variance may be written also 𝑠2(𝑝̈, 𝑤0) using the log-changes 𝑝𝑖̈ = ∆𝑙𝑜𝑔𝑝𝑖 = log (𝑝𝑖

1 𝑝𝑖
0)⁄ . 

3 Log-Paasche and log-Laspeyres are also called Geometric Paasche and Geometric Laspeyres, especially if confusion to the 

logarithms of Paasche 𝑙𝑜𝑔𝑃𝑎 and Laspeyres 𝑙𝑜𝑔𝐿 are at stake. 
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The old and new variances 𝑠0
2(𝑝̇) and 𝑠1

2(𝑝̇) govern the log-differences of the three indices of the old and 

new forks. 

 

The problem remains how the three-tined forks of the old and new weights situate in respect to each other. 

As data shows, there does not exist any firm geometric rules. Especially, Fisher´s ´Five-tined Fork´ was only 

an accident, not any rule. In our data for the self-care medicines, Laspeyres and Paasche had for every month 

large biases up and down, respectively. They did not lie in the center but on the opposite sides of the index 

fork and they were the most biased of these six formulas all the time. Also, the number of tines is not five, as 

in Fisher´s data, but varies between the extremes three and six, see figure below. 

 

 

 
 

As the figure shows, the type of the fork that the six indices form, varies from month to month. But here the 

Laspeyres-type fork with old weights, Laspeyres on the top, is surprisingly always higher than the new weight 

fork, where Paasche is the lowest index. All other basic indices remain between L and Pa. 

 

Fisher´s Five-tined Fork consists of five groups of indices with typical representatives 

 𝑃𝑙 > 𝑝 > 𝑃𝑎 ≈ 𝐿 > 𝑙 > 𝐿ℎ . Fisher claimed that 𝑃𝑎 ≈ 𝐿 are unbiased (and very good) index numbers, while all 

other of these basic indices have ±1 or ±2 doses of bias. This theory of Fisher´s is only one possibility, not a 

generally valid theory. The assumption 𝑃𝑎 ≈ 𝐿 does not hold generally. For instance, the figure 1 above 

provides a counter-example, where 𝑃𝑎 and 𝐿 are not in the middle tine but the lowest and highest indices. 

Here the substitution effects are exceptionally large. Fisher´s theory of Five-tined Fork is rejected. For more 

information, google Vartia (1978). 

 

The superlative formulas F, Stu, MV and t form a much tighter band within the six indices here: 

1,03

1,035

1,04

1,045

1,05

1,055

2014,6 2014,8 2015 2015,2 2015,4 2015,6 2015,8

Fig 1: P self-care drugs, subgroup 5N

L

Pa
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All sensible or minimally accurate index numbers should remain within these limits. 

 

As a warning, we show a picture concerning the six factor antithesis formulae, like 𝐹𝐴(𝑙) = 𝑉1/0 𝑙(𝑞)⁄  and 

𝐹𝐴(𝑝) = 𝑉1/0 𝑝(𝑞)⁄ . This factor antithesis of 𝑙 arises by first using the same formula for quantities, 𝑙(𝑞), 

instead of prices, and then returning back to the price space by calculating its co-factor 𝐶𝑜𝐹(𝑙(𝑞)) =

𝑉1/0 𝑙(𝑞)⁄ = 𝐹𝐴(𝑙). As a technical operation, this is simple, but conceptually it requires some expertise in 

index numbers. Note that the log-difference of two FA´s depends only on the difference of the formulas in 

the quantity side, say: 𝑙𝑜𝑔
𝐹𝐴(𝑝)

𝐹𝐴(𝑙)
= 𝑙𝑜𝑔

𝑉1/0

𝑝(𝑞)
− 𝑙𝑜𝑔

𝑉1/0

𝑙(𝑞)
= 𝑙𝑜𝑔

𝑙(𝑞)

𝑝(𝑞)
 . Therefore, the FA´s of the six basic 

indices vary much more than their original price equivalents. The FA’s for the sex indices have represented 

in Appendix two. 

 

The FA´s of the six basic formulas do not remain within the limits of the picture above and it shows that 

there is something seriously wrong with them. They are based on applying the six basic indices in the 

quantity side of the monthly data, where the variance of the quantity changes is roughly 35 times bigger than 

the similar price variance. Therefore, the FA´s of the six formulas have index forks dispersing roughly 35 

times more than the ordinary price index forks in our data. In Fisher´s yearly test data, this was not the case, 

but instead the variations in price and quantity relatives were exceptionally almost the same. Many of 

Fisher´s conclusions and suggestions based on the Factor Antitheses FA and on the symmetrical treatment of 

p´s and q´s are based on this accidental and normally false condition. 

 

We cannot get support from the quantity side of data, because it disperses so heavily!  

 

1,03

1,035

1,04

1,045

1,05

1,055

2014,6 2014,8 2015 2015,2 2015,4 2015,6 2015,8

Fig 2: P self-care drugs, subgroup 5N

L

Pa
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Note how Laspeyres and Paasche appear in the middle of the picture. They are OK and everything else is out 

of lines. 

 

In the next picture, we show all the six basic indices and their FA´s in the figure. Note how much tighter the 

original six price indices move compared to their FA´s. 

  

  
 

 
We will comment later some Fisher´s false conclusions which depend on this exceptional feature of his data. 

In practice, this means that price indices derived from quantity relatives, so called factor antithesis formulas 

0,6

0,7

0,8

0,9

1

1,1

1,2

1,3

1,4

1,5

1,6

2014,6 2014,8 2015 2015,2 2015,4 2015,6 2015,8

Fig 3: Six Factor Antithesis formulas.
P self-care drugs, subgroup 5N
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Fig 4: Basic indices and their FA´s
in the sub-group 5N

FA(Lh)
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for prices, become less and less usefull as the variance of the changes in quantities increases. These effects 

are no minor nuances, because FA-indices in the sub-group of special commodities 5S will be found literally 

useless (except L and Pa, see Appendix 2).  

 

As a concrete conclusion, the factor antithesis formulas of the basic six price index formulas are as such 

useless formulas because of their large biases (about 35 times larger than for the basic indices). This 

rejection of FA formulas does not hold for the FA´s of L and P, because their FA´s are the same indices but 

in the reverse order: 𝐹𝐴(𝐿) = 𝑃 and 𝐹𝐴(𝑃) = 𝐿 . Check that these indices satisfy 𝐿 ∗ 𝑃(𝑞) = 𝑃 ∗ 𝐿(𝑞) =
𝑉1

𝑉0 

with obvious notation. Prove that for Fisher´s indices 𝐹 ∗ 𝐹(𝑞) =
𝑉1

𝑉0 . Hint: multiply the former equations, 

group their terms and take a square root. 

 

Price indices should not be calculated as functions of the same quantity indices (or cofactors) of the six basic 

formulas (or their rectifications). Indices calculated via quantity data varied roughly in the same proportion 

as the variances 𝑠2(𝑝̇, 𝑤) and 𝑠2(𝑞̇, 𝑤) of price and quantity log-changes!  

 

The FA´s of the six basic indices (and their derivations, expect the ones based on L and Pa) become totally 

useless in for the group 5S of special commodities.  

 

  
 

Also, here L and P are OK, and everything else is out of bounds. Factor antithesis indices vary from 0,01 to 

1000, as the basic price indices vary within 0,9 - 1,1, as shown below. 

 

0,001

0,01

0,1

1

10

100

1000

2012,5 2013 2013,5 2014 2014,5 2015 2015,5 2016 2016,5

Fig 5: P self-care drugs, FA´s in sub-group 5S

FA(Lh) FA(l) FA(L) FA(Pa) FA(p) FA(Pl)
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The precision formulas are still much more accurate. They do an excellent job also in the set 5S of special 

commodities having strongly variable values. They vary systematically and their differences are maximally 

only three percent. 

 

 

  
 

 

  

0,9
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1
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Fig 6: P self-care drugs, 
basic indices in sub-group 5S
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6. Measuring the 𝑆ℎ𝑖𝑓𝑡 of an index number P in respect to Log-Laspeyres 
 

We transform the figure above to a form which better shows the deviations of its all indices from the Log-

Laspeyres l. We want to compare indices for different periods and for hypothetical data, where changes in 

prices and quantities approach zero or some proportional values. Therefore, we divide the relative difference 

of the compared indices by the average relative difference of our six basic indices. We define the shift S of an 

index number (say p) in respect to Log-Laspeyres l as the difference of p and l in the log-scale divided by the 

average deviation of tines from the central tine: 

 

(12)  𝑆(𝑝) = 𝑆ℎ𝑖𝑓𝑡(𝑝, 𝑙) = 
log (

𝑝

𝑙
)

1

4
(log(

𝐿

𝐿ℎ
)+log(

𝑃𝑙

𝑃
))

≅
log (

𝑝

𝑙
)

1

2
s2(ṗ; 𝑤̅)

 . 

 
𝑆ℎ𝑖𝑓𝑡(𝑃, 𝑙) is the relative difference of any index P from l divided by the average distance between the six 

nearby indices of our two forks. These forks consist of 6 different linear approximations for the superlative 

indices like Fisher or Törnqvist. Here the denominator, half the variance of ṗ , acts as a magnifying glass 

which expanses the picture when the deviations of  ṗ are small or, especially, when s2(ṗ; 𝑤̅) approaches 

zero and the 6 basic indices approach the same value. Note that, although 𝑆ℎ𝑖𝑓𝑡(𝑃, 𝑙) approaches the form 

0 0⁄ , its limit value is usually a small real number. 

 

For the indices (𝐿, 𝑙, 𝐿ℎ) of the old fork the shifts become  (𝑆(𝐿), 𝑆(𝑙), 𝑆(𝐿ℎ)) ≅ (1, 0, −1) with essential 

equality at least for small deviations in log-changes of prices and quantities. For the indices (𝑃𝑙, 𝑝, 𝑃) of the 

new fork the shifts  (𝑆(𝑃𝑙), 𝑆(𝑝), 𝑆(𝑃𝑎)) are more interesting. They show, how the new fork deviates (up or 

down) from the old fork in the normalized scale. For the first period, we have a four-tined fork and for the 

last a five-tined fork. All the forks differ much from Fisher’s data where 𝐿 ≈ 𝑃𝑎 as here 𝐿 and 𝑃𝑎 are the 

largest and lowest figures. We will show how we can get rid of all assumptions related to their sizes and 

mutual differences. 

 

  

  
 
The small fluctuations in the above figure disappear completely, if we consider the asymptotic case, where 

the changes in the prices approach zero or some proportional values. These can be calculated by somewhat 

-4
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-2

-1
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2

2014,5 2014,75 2015 2015,25 2015,5 2015,75 2016

Fig 8: P self-care drugs, 
Shifts(P, l) in subgroup 5N
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complicated algebra, see Appendix 1. The case 𝑆(𝑝) = 𝑆ℎ𝑖𝑓𝑡(𝑝, 𝑙) ≅ 0 where l and p happen to be almost 

equal, looks as follows: 

 

  
  
The shift parameter S of the 6 indices varies from 1 to -3 and the combined fork has 3, 4 or 5 tines, as the 

Paasche-type indices (new 3-fork) shift downwards in this data. This data clearly contradicts Fisher´s main 

conclusion, that L and Pa are unbiased and “very good” index numbers. This conclusion was as a general 

advice a mistake while they may be strongly biased, as in this data. None of our six indices cannot be 

classified as unbiased, because in some data their biases are clearly realized. But we shall show in a minute 

that their rectifications based on their time antithesis are all unbiased and superlative index numbers for 

small price and quantity changes (not necessarily generally). 

 

 

7. Measuring the 𝑆ℎ𝑖𝑓𝑡 of an index number P in respect to Fisher 
 

One of the basic features of Fisher´s theory is to relate all other index numbers to it. This makes sense 

perfectly for small changes, but can be questioned for large ones. The Shift of an index number formula P, 

say,  𝑆ℎ𝑖𝑓𝑡(𝑃; ∙), is naturally defined as a shift S in respect to Fisher, Törnqvist or any other asymptotically 

unbiased index number formula. This helps us to define the bias of an index number for small changes or 

asymptotically. The question of bias must be left open for moderate or large changes. Therefore, we call our 

function symmetrically as a shift between two formulas. To be explicit, we decide to use the traditional 

Fisher index as the basic point of reference. The expression for 𝑆ℎ𝑖𝑓𝑡(𝑃;  𝐹) for actual or moderate changes 

is defined as follows 

 

(13) 𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹) = 
log(

𝑃

𝐹
)

1

4
(log(

𝐿

𝐿ℎ
)+log(

𝑃𝑙

𝑃
))

≅
log(

𝑃

𝐹
)

1

4
(s2(ṗ ,w0) +s2(p ̇ ,w1))

 ≅  
log(

𝑃

𝐹
)

1

2
s2(ṗ ,w̅)

 . 

 

Note that this is an anti-symmetric function: 𝑆ℎ𝑖𝑓𝑡(𝐹, 𝑃) = −𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹). Irrespective of the size of the 

denominator, some values of 𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹) for our six basic indices P must be outside or at the limits of the 

interval (-1, +1). Think of the case 𝑙𝑜𝑔𝑙 ≈ 𝑙𝑜𝑔𝑝 shown above, where the two three-forks essentially 

coincide. 𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹) is well-defined and attains similar values also when its denominator or, more radically, 

all commodity deviations in log-changes of prices and quantities tend to zero (almost proportional changes 

APC). These are needed in the definitions of asymptotic bias below. 

 

An index number P is called unbiased and superlative for small changes only if 𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹) → 0 or its 

numerator approaches zero quicker than its denominator. This happens for indices, which are quadratic 

approximations of F for small changes in log-prices and log-quantities. Fisher´s theory of Five-tined Fork 

was clearly mistaken, see Vartia (1978) and Vartia-Vartia (1984), and no replacement has been generally 

presented this far. These concepts aim at developing such a new theory. 

-3
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-1

0
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3
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Fig 9: Index Fork when Shift(p,l) = 0
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The function 𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹) takes the role of magnifying glass when its denominator is small. It proves to be 

essential how it behaves, when its denominator approaches zero. We classify the index numbers expressed in 

terms of log-changes 𝑃 = 𝑓 (
𝑝1 𝑞1

𝑝0 𝑞0) = 𝑃(𝑝̈, 𝑞̈, 𝑤0) by the way the shift function 𝑆(𝑝̈, 𝑞̈, 𝑤0) = 𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹) 

behaves for small values of its log-changes 𝑝̈, 𝑞̈. Especially important is, whether this function has a unique 

limit value when these arguments tend to zero or not. This determines whether the price index formula 𝑃 =
𝑃(𝑝̈, 𝑞̈, 𝑤0) is unbiased and superlative, permanently biased, contingently biased or freakish for small 

changes. We formulate the concept of bias and unbiasedness of an index number formula more accurately in 

two different ways:  

 

An index number P is said to be superlative for small changes (for SC) 

 if and only if 

its 𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹) in respect4 to F approaches a unique limit and it is zero, when all the log-

changes in p´s and q´s tend to zero. The same zero limit must be attained by all different paths 

of the inputs or independently how they approach zero. 

 

An index number P is said to be permanently biased for small changes (SC)  

if and only if 

its 𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹) in respect to F approaches a unique limit which is a non-zero real number, 

when all the log-changes in p´s and q´s tend to zero. The same non-zero limit must be attained 

by all different paths of the inputs. This non-zero value is the value of the permanent bias (a 

fraction of the norm up or down compared to F) in the index. 

 

An index number P is said to be contingently biased for small changes (SC) 

if and only if 

its 𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹) in respect to F does not approach a unique limit, when all the log-changes in 

p´s and q´s tend to zero. Different real numbers are approached for different paths of the 

inputs approaching zero. 

 

An index number P is said to be freakish for small changes (SC) 

if and only if 

its 𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹) in respect to F does not approach a unique limit, when all the log-changes in 

p´s and q´s tend to zero. Instead the 𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹) approaches ±∞ for some paths of the inputs 

approaching zero. It is also contingently biased, in a very serious way. 

 

 

There are only four groups of index numbers: 

 

1 Superlative with existing 𝑙𝑖𝑚𝑆𝐶𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹) equaling zero. These are quadratic 

approximations of F. They do not differ from each other for small changes. 

2 Permanently biased with existing 𝑙𝑖𝑚𝑆𝐶𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹) equaling a non-zero real number, 

say b. They are permanently biased up or down by b. These differ from F as follows: 

𝐿𝑜𝑔𝑃 = 𝑙𝑜𝑔𝐹 + 𝑏 ∗ 𝑠2(𝑝̈, 𝑤̅) +third and higher order terms. 

3 Contingently biased where 𝑙𝑖𝑚𝑆𝐶𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹) does not exist, because different real 

numbers are approached for different paths of 𝑝̈, 𝑞̈ approaching zero. For these 𝐿𝑜𝑔𝑃 is 

only a linear approximation of logF, i.e. it differs from logF by quadratic and higher order 

terms. They differ from F in a haphazard way even for small values of 𝑝̈, 𝑞̈ depending on 

the contingent features of the data. 

4 Freakish where 𝑙𝑖𝑚𝑆𝐶𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹) does not exist, because infinities are approached for 

some paths of 𝑝̈, 𝑞̈ approaching zero. For these 𝐿𝑜𝑔𝑃 is not even a linear approximation of 

logF, but even a worse one. Typically, a freakish index P is evenly weighted or the 

                                                      
4 or equivalently in respect to any other superlative formulas such as t, D, Dr, SV … 
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weights are based on a third period or are chosen independently of the old or new value 

shares, like in Lowe´s formula, see Vartia (1976, p 60-61). Also, freakish indices are 

contingently biased, in a very serious way. 

 

There is no reason of using freakish, permanently biased or contingently biased formulas for complete 

micro data, because there are an infinite number of superlative index numbers, where one can choose of, 

see Appendix 1. There are no finite steps or quanta by which freakish, permanently biased or 

contingently biased formulas can only differ from F or its quadratic approximations. These formulas 

differ continuously from F: there does not exist a valid “quantum theoretic” correction of Fisher´s 

mistaken Five-tined Fork. The whole idea of Fisher was based on classifying only proposed or other 

apparent formulas, not all possible formulas. For instance, any weighted mean of l and L (say 0.1𝑙 +
0.9𝐿) is a valid contingently biased formula. Similarly, any weighted mean of t and F (say 0.1𝑡 + 0.9𝐹) 

is a valid superlative formula. 

 

Fisher´s Five-tined Fork has been an excellent selling argument, which succeeded to sell Laspeyres 

contingently biased and suspicious formula L as a standard formula in public index number production. It 

took almost a century to show convincingly that it was good selling argument but against the facts. 

 

This was the idea of definition of unbiasedness in Vartia (1978) and Vartia-Vartia (1984), which was 

formulated partly verbally and did not raise much attention. In vector notation, the smallness condition 

means that the (unweighted Euclidean) length of vectors ‖∆𝑙𝑜𝑔𝑝‖ = √∑(∆𝑙𝑜𝑔𝑝𝑖)2 → 0 and ‖∆𝑙𝑜𝑔𝑞‖ → 0. 

This implies e.g. ‖∆𝑙𝑜𝑔𝑣‖ → 0  and ‖∆𝑙𝑜𝑔𝑤‖ → 0. Also 𝑙𝑜𝑔𝑃 → 0, 𝑙𝑜𝑔𝑄 → 0  and 𝑙𝑜𝑔
𝑉1

𝑉0 → 0 . All these 

conditions correspond to “small changes”. 

  

The second definition of bias and unbiasedness is a stricter one and is related to almost proportional 

changes, not to almost zero changes as above. Here an index number P must be almost equal (a quadratic 

approximation) to F to be unbiased and superlative for APC already when the log-changes of prices and 

quantities approach any proportional values. This condition of inputs can be described as “the commodity 

variation in log-prices and log-quantities vanishes” or the variances 𝑠2(𝑝̇, 𝑤̅) and 𝑠2(𝑞̇, 𝑤̅) tend to zero. 

Price and quantity indices or their log´s 𝑙𝑜𝑔𝑃 and logQ may attain any value, not zero as above. 

 

An index number P is said to be superlative for almost proportional changes (for APC) 

  if and only if 

its 𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹) in respect5 to F approaches a unique limit and it is zero, when all log-

changes of prices and quantities approach any proportional values. The same limit must be 

attained by all different paths of the inputs. Now the variances 𝑠2(𝑝̇, 𝑤̅) and 𝑠2(𝑞̇, 𝑤̅) of the 

log-changes in p´s and q´s around their mean values both tend to zero, while 𝑙𝑜𝑔𝑃 and logQ 

may get any constant values. 

 

An index number P is said to be permanently biased for almost proportional changes (APC) 

if and only if 

its 𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹) in respect to F approaches a unique limit which is a non-zero real number, 

when all log-changes of prices and quantities approach any proportional values. The same 

non-zero limit must be attained by all different paths of the inputs. This non-zero value is the 

value of the permanent bias (a fraction of the norm up or down compared to F) in the index. 

 

An index number P is said to be contingently biased for almost proportional (APC) 

if and only if 

its 𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹) in respect to F does not approach a unique limit, when all log-changes of 

prices and quantities approach any proportional values. Different real numbers are approached 

for different paths of the inputs approaching constants. 

 

                                                      
5 or equivalently in respect to any other asymptotically unbiased or superlative formulas such as t, D, Dr, SV … 
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An index number P is said to be freakish for almost proportional changes (APC) 

if and only if 

its 𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹) in respect to F does not approach a unique limit, when all log-changes of 

prices and quantities approach any proportional values. The 𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹) approaches ±∞ for 

some paths of the inputs approaching constants. It is also contingently biased, in a very 

serious way. 

 

The second definition is stronger and demands more and is presented here only for later reference and in 

order to give some clarifying comments. If an index is superlative for almost proportional changes, it is 

necessarily superlative for small changes. It is rather remarkable, that e.g. F and t approximate each other 

equally well irrespective of how much the prices and quantities have changed (i.e. how large their 

proportional values have been). MV are superlative for SC, but it is not superlative for APC. 

 

We use mostly to the first definition, which seems to conform best to the current research in index number 

theory.  

 

In Appendix 1 one we formulate 14 theorems and their proofs. By these theorems we may classify the index 

number formulas in to superlative indices, permanently, contingently biased and freakish indices. They also 

verify our classification of index numbers in to four groups. 

 

Shifts and biases get large values if also FA´s of our basic formulas are taken into account. 

  

 
 

Especially 𝐹𝐴(𝐿ℎ) and 𝐹𝐴(𝑃𝑙) contain huge biases. If FA´s are dropped, the shifts and biases near the zero-

line above become visual: 
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These figures show, that  

A. the index forks are not stationary in time and  

B. Fisher´s Five-tined Fork does not appear at all here, not to speak as the only possibility. 

Fisher´s theory is clearly rejected. 

 

 

Inside these bounds, we find all the superlative formulas, which have zero biases for SC although their shifts 

from F differ slightly from zero (because changes are not infinitesimal): 

 

+  

 

We stress that the normed deviation from Fisher, the limit of 𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹), either up or down is a clear fault of 

formula P if the changes in prices and quantities are small. 

 

The shift formulas are related to the same denominator norm, which is calculated from four extreme 

members of the forks (l and p are not needed). It is a good practice always to calculate all the six basic 

indices (not just L or perhaps L and P). This allows calculating the shift and the many superlative indices like 

Törnqvist (and its derivatives), Fisher, Drobish, Stuvel etc. from them.  
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The two three-forks (𝐿, 𝑙, 𝐿ℎ) and (𝑃𝑙, 𝑝, 𝑃𝑎) provide a natural basis for all quantitative comparisons (such as 

𝑆ℎ𝑖𝑓𝑡(𝑝, 𝑙) and 𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹)) of index number formulas. Such data would increase the applications of official 

data, perhaps to surprising directions. 

 

Fisher thought that biases of formulas lie within limits of (-2, +2). This is false. As shown above, biases of 

some FA-formulas can be large real numbers, less than -300 or more than 300. 

 

8. Simple derivation of the three basic superlative index numbers 
 

Table 1 in Appendix 3 shows that the TA formulas of the original formulas remain in the same set, but their 

order is reversed. This is essential: For instance, the highest index of the old fork, i.e. L, is mapped to the 

lowest index of the new fork or Pa. It is easier to grasp this algebraic structure in terms of geometry or in the 

picture, where both forks are presented. In our opinion, this is perhaps the best idea of Fisher. Especially its 

use in rectification of the formulas gives superlative results! 

 

We will show, that the rectified formulas (in respect to its time antithesis TA) will lead to the same value for 

small variances of 𝑝̇ and 𝑞̇. This point served as the main point in the definition of asymptotic unbiasedness 

of index numbers, which is an exact concept for small deviations in 𝑝̇ and 𝑞̇, i.e. how much these log-

changes differ from some constants. Their magnitude (i.e. the values of the price and quantity indices or 

constants) is totally irrelevant! For large deviations of 𝑝̇ or large deviations of 𝑞̇ (or both) the question of 

unbiasedness is left slightly ambiguous. This main message of Vartia (1978) and Vartia-Vartia (1984) was 

left unnoticed in index number literature. But it still clarifies many problems in index numbers. 

 

The whole idea is the same as in feedback in dynamic systems (see Appendix 2, Table 1): a formula (1) = (2) 

is used first in the other direction (3), and then returned back to the original comparison (4) = (5). This is 

used as the correcting information for the original formula (1) = (2). This is the feedback connection used in 

rectifying by the time antithesis. We will show that TA-rectified formula 

 

  

(14) √𝑓 (
𝑝1 𝑞1

𝑝0 𝑞0) /𝑓 (
𝑝0 𝑞0

𝑝1 𝑞1) 

 

gives almost the same results (for small deviations in 𝑝̇ = the log-changes of prices and 𝑞̇ =  the log-changes 

of quantities) for all our basic indices. This ´constant mean point´ serves as the reference for all formulas that 

are called asymptotically unbiased, as defined in chapter 6. 

 

For small deviations in 𝑝̇ and 𝑞̇ or regular moderate deviations, the old and new forks have (approximately) 

the same dispersions (= deviations or separations of the three tines) in the log-scale, as stated by Theorems 1-

3 (see Appendix 1). We describe this asymptotic situation of small changes below and derive simply its main 

conclusions. 

 

In the base fork, the three log-indices differ approximately by half the old price variance ∆0=  1

2
𝑠0

2(𝑝̇): 

 

𝑙𝑜𝑔𝐿 = 𝑎0 + ∆0  𝑇𝐴(𝐿) = 𝑃𝑎 

𝑙𝑜𝑔𝑙 = 𝑎0   𝑇𝐴(𝑙) = 𝑝 

𝑙𝑜𝑔𝐿ℎ = 𝑎0 − ∆0  𝑇𝐴(𝐿ℎ) = 𝑃𝑙 
 

In the new fork, the three log-indices differ approximately by half the new price variance ∆1=  1

2
𝑠1

2(𝑝̇): 

 

𝑙𝑜𝑔𝑃𝑙 = 𝑎1 + ∆1 

𝑙𝑜𝑔𝑝 = 𝑎1 

𝑙𝑜𝑔𝑃𝑎 = 𝑎1 − ∆1 
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For small deviations in 𝑝̇ and 𝑞̇ the new and old variances of 𝑝̇ will approach equality, ∆1=  ∆0=  ∆, not only 

absolutely but also relatively. This will normally hold accurately already for moderate deviations, because 

variances are relatively independent from their weighting (both have the same squared deviations of log-

prices). For the variances in 𝑝̇ and 𝑞̇ both approaching zero (which makes old and new value shares to 

approach each other), we have asymptotic equations where ∆ clearly indicates 1 dose of bias measured from 

the central tine of the fork: 

 

𝑙𝑜𝑔𝐿 = 𝑎0 + ∆ 

𝑙𝑜𝑔𝑙 = 𝑎0 

𝑙𝑜𝑔𝐿ℎ = 𝑎0 − ∆ 
 

 

𝑙𝑜𝑔𝑃𝑙 = 𝑎1 + ∆ 

𝑙𝑜𝑔𝑝 = 𝑎1 

𝑙𝑜𝑔𝑃𝑎 = 𝑎1 − ∆. 

 

From these equations, we see e.g. that 1

2
(𝑙𝑜𝑔𝐿 + 𝑙𝑜𝑔𝑃𝑎) = 𝑙𝑜𝑔𝐹 = 1

2
(𝑎0 + 𝑎1), which equals e.g. 

1

2
(𝑙𝑜𝑔𝑙 + 𝑙𝑜𝑔𝑝) = 𝑙𝑜𝑔𝑡 = 1

2
(𝑎0 + 𝑎1). We calculate the geometric averages of between an index and its time 

antitheses (or equivalently the arithmetic averages of their log´s) before equality ∆1=  ∆0=  ∆ and get: 

 
1

2
(𝑙𝑜𝑔𝐿 + 𝑙𝑜𝑔𝑃𝑎) = 𝑙𝑜𝑔𝐹 = 1

2
(𝑎0 + 𝑎1) + 1

2
(∆0 − ∆1) → 1

2
(𝑎0 + 𝑎1)  

1

2
(𝑙𝑜𝑔𝑙 + 𝑙𝑜𝑔𝑝) = 𝑙𝑜𝑔𝑡 = 1

2
(𝑎0 + 𝑎1)   

1

2
(𝑙𝑜𝑔𝐿ℎ + 𝑙𝑜𝑔𝑃𝑙) = 𝑙𝑜𝑔𝐷 =

1

2
(𝑎0 + 𝑎1) −  

1

2
(∆0 − ∆1) →

1

2
(𝑎0 + 𝑎1) 

 

when ∆0 − ∆1 and 
∆0−∆1

∆
 approach zero. This happens if both  1

2
𝑠2(𝑝̇ ; 𝑤) and  1

2
𝑠2(𝑞̇ ; 𝑤) approach zero, for 

old and new value shares. This is a differential geometric argument, which becomes exact mathematics by 

using the shifts between the formulas, as is done in Appendix 1. 

 

The point is that all the three rectified indices attain (for small deviations in 𝑝̇ and 𝑞̇, the absolute magnitude 

of the log-changes is irrelevant) approximately the same value, and exactly so if the variances of 𝑝̇ and 𝑞̇ 

approach zero. The situation above describes what happens in the limit of almost the same proportional 

changes. This common point 1

2
(𝑎0 + 𝑎1) defines the exact point of indices, the average point of these six 

indices on the log-scale, which can and should be declared as unbiased. Or more accurately, as unbiased for 

almost proportional changes of prices and of quantities. We have proved the following theorem (see 

Appendix 1): For all values of 𝑙𝑜𝑔𝑙 = 𝑎0 and 𝑙𝑜𝑔𝑝 = 𝑎1, the indices (𝐹, 𝑡, 𝐷) approach each other and the 

constant  1

2
(𝑎0 + 𝑎1) in the log-scale in the sense that their Shifts vanish when the variances of the log-

changes in prices ∆=  1

2
𝑠2(𝑝̇ ; 𝑤̅) and in quantities ∆(𝑞) =  1

2
𝑠2(𝑞̇ ; 𝑤̅) approach zero. 

 

For large deviations, even these three precision formulas (or other asymptotically unbiased indices) start to 

scatter and one cannot say any more how the small biases start to distribute among them. 

 

Here are only three TA-rectified new formulas, because e.g. the Törnqvist formula is attained by either 

rectifying of l or p. We do not present this as formula (or its simple algebra), because it is much better that 

the reader looks carefully the table 1 in Appendix 2 and clears to procedure to himself (or to herself).  

 

For small variances in the log-changes of both prices and quantities, the three indices (𝐹, 𝑡, 𝐷) have 

approximately the same value, irrespective where the three forks situate (𝑎0, 𝑎1) and how they disperse ∆. 

All other averages (than these TA-rectifications) over two members from different three-forks are always 

biased up or down. As proved in Vartia-Vartia (1984), 1

2
(𝑙𝑜𝑔𝐿 + 𝑙𝑜𝑔𝑃𝑙) = 1

2
(𝑎0 + 𝑎1) + ∆ and therefore 
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both √𝐿 ∗ 𝑃𝐿 and 
1

2
(𝐿 + 𝑃𝐿) have one dose of permanent bias up. Similarly, we get  1

2
(𝑙𝑜𝑔𝐿ℎ + 𝑙𝑜𝑔𝑝) = 

1

2
(𝑎0 + 𝑎1) − 1

2
∆ and thus √𝐿ℎ ∗ 𝑝 has a half dose of permanent bias down, etc. 

 

Only the three indices (𝐹, 𝑡, 𝐷) produced by TA-rectification are always unbiased and superlative of the ones 

we have discussed. Further research is needed to widen this important set of asymptotically unbiased index 

numbers, but these three indices have served (together with St and MV) to show where the precision formulas 

lie and how near each other. 

 

This ends our discussion and correction of the Fisher´s partly experimental discussion of his concept of bias 

and unbiased index numbers. The main conclusion is that both Laspeyres L and Paasche Pa price indices are 

clearly (asymptotically and finitely) biased formulas, whose biases may be small only by accident. 

 
As we have noted, the quantity side of data has much more variability than the price side. Therefore, we 

should routinely use the price indices as a starting point of the V = P*Q decomposition. For instance, start 

e.g. from t and use the pair (𝑡, 𝐶𝑜𝐹(𝑡)) leading to 

 

(15)  
𝑉1

𝑉0 = 𝑃 ∗ 𝑄 = 𝑡 ∗ 𝐶𝑜𝐹(𝑡) . 

 

This would give accurate results, instead of doing it the other way around, (𝑃, 𝑄) = ( 𝐶𝑜𝐹(𝑡) , 𝑡), 

where Törnqvist formula is first applied for quantities and then its co-factor 𝐶𝑜𝐹(𝑡) is used as a price index. 

That would give useless results in 5S and poor results in 5N because the quantity indices vary too much.  

These FA-indices are totally useless in 5S because of the large variances 𝑠2(𝑞̇ ; 𝑤) of the quantity log-

changes 𝑞̇ . Their biases are really large real numbers, often outside  ±5000 doses of bias! Concretely, these 

large figures arise, because the FA-indices disperse so strongly.  In many commodities, their quantity 

relatives approach infinity caused by division of nearly zero, and the index explodes, see Fig. 5 page 12. 

 
On the other hand, the original six indices (calculated normally in the price-space) deviate only moderately 

from each other. Their graphs show that the old and new three-forks change abruptly places, especially in 

2015-16, see Fig. 6 page 12. 

 

In the set of normal commodities 5N, the price development is in total control, see Fig. 1 page 9. 

 

 

9. Index number production for similar complete micro data 
 

If we concentrate only on the precision formulas in 5S, the results are in good control. This will be most 

probably the case also in other similar detailed homogeneous price-quantity data sets, see Fig. 7 page 13. 

 

The most important feature in our treatment was the division of data into two, as the union of normal and 

special commodities, say 5N and 5S. Simple like that! In 5N all the index calculations are quite easy and 

traditional and it helped us to define the separation between e.g. contingently biased, freakish and superlative 

formulas. From the superlative formulas, we mentioned only a few: F, t, St, D, MV, VW. Some others will be 

introduced in the next paper and their merits and dis-merits will be discussed. A concrete application of these 

formulas in measuring welfare change in consumer theory is Vartia (1983). 

 

We shall analyze carefully these formulas and drop away (eliminate) those which do not react correctly to 

extreme changes (up or down) in prices and quantities, a less analyzed property discussed in Vartia (1976, 

1976b). That kind of changes occur all the time in 5S and they become even more pronounced elements in 

5S when new and disappearing commodities are added to it.  
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We hope that the future research will show, that the following picture describes the actual problem very 

accurately. If so, we can be indifferent between choosing among the indices in {𝐹, 𝑆𝑡𝑢} in order to calculate 

the official price development in 5S and combine that with 5N using the same formula. 

  
 

10. Conclusions 

 
We analyze most typical index number formulas by the method of ‘Fisher forks’. We define mathematically 

the shift measure by which we may classify the index number formulas in to four classes: superlative, 

permanently biased, contingently biased and freakish. We visualize some time quite difficult mathematics by 

empirical founding’s and the graphs of them. In empirical analyze we use complete micro data including 

price, quantity and value information in all time periods.  

 

Our data includes large deviations in quantity and/or price changes and naturally large variation in value 

shares. We show that only few index numbers can tolerate them. The situation is complicated in many ways, 

but logically arranged figures tell the story best. The concept of bias of the index number is very important 

issue of our study. It is well known, that there does not exist a simple numerical measure for bias or order of 

quality of an index number, because it depends on so many factors.  

 

We have demonstrated, that Fisher´s theory, his Five-tined Fork, 𝑃𝑙 > 𝑝 > 𝑃𝑎 ≈ 𝐿 > 𝑙 > 𝐿ℎ is false because 

Laspeyres L and Paasche Pa are not even usually almost equal. Actually, index numbers fall in four groups, 

which are Superlative, Permanently Biased, Contingently Biased and Freakish. These are defined by the limit 

behavior of the function 𝑆ℎ𝑖𝑓𝑡(𝑃, 𝐹) when changes (or deviations) in log-prices and log-quantities approach 

zero. 

 

We have found that contingently biased indices, like simple base or observation period weighted indices 

(especially 𝐿 and 𝑃𝑎 ), get values here and there, but superlative indices go hand in hand. Choosing among 

the best formulas is more or less indifferent, because their values differ so little. 

 

We analyze the data by classifying the commodities as normal ones, forming here the subset 5N, and special 

ones with exceptionally large relative changes in value. The latter formed the set of special commodities 5S 

in this paper, where individual values either increased 5-fold or declined to 1/5 of their old value. The subset 

5S revealed simply and concretely, which index number formulas can be used in public information 

production. We are able to handle also the problems of new and disappearing commodities in a similar 

fashion. 
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In the forthcoming CPI, the number of commodities can be increased by factors 50-100 and also all the 

quantities will be observed for many subgroups of commodities, based on scanner data on all transactions on 

the most detailed commodity level. This “Big Data” will remove most of the problems in the former 

production system, were only some 1500 commodities out of roughly 100 000 actual ones were monitored 

and quantities were not observed at the same time. Other problems of index number construction possibly 

remaining are of minor importance. 

 

The accuracy and reliability of CPI will rise to a higher level, without much additional costs. 

 

Let us say farewell with thanks to the dear Laspeyres, which has been the prototype of decent index 

numbers. It has a number of good properties, but a single drawback: it is inaccurate. 
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Appendix 1: Theorems on biasedness and unbiasedness 
 

The relative weight bias depends on the difference of means 𝑙𝑜𝑔𝑝 − 𝑙𝑜𝑔𝑙 = ∑(𝑤𝑖
1 − 𝑤𝑖

0)𝑝̈𝑖 between the 

central tines of the new and old weighted forks. This can be written in several ways as an exact covariance 

between various variables. This rather surprising idea forms our first theorem. 

 

Theorem 1:  𝑙𝑜𝑔𝑝 − 𝑙𝑜𝑔𝑙 = ∑(𝑤𝑖
1 − 𝑤𝑖

0)𝑝̈𝑖 = ∑ ∆𝑤𝑖∆𝑙𝑜𝑔𝑝𝑖  . 
 

This can be expressed as several different (but numerically equal) covariances. Thus, identically for any data:  

 

𝑙𝑜𝑔𝑝 − 𝑙𝑜𝑔𝑙   = ∑
1

𝑛
𝑛∆𝑤𝑖∆𝑙𝑜𝑔𝑝𝑖 =  𝑐𝑜𝑣 (𝑛∆𝑤, 𝑝̇;

1

𝑛
) even weights 

  = ∑ 𝑤𝑖
0 ∆𝑤𝑖

𝑤𝑖
0 ∆𝑙𝑜𝑔𝑝𝑖 =  𝑐𝑜𝑣 (

∆𝑤

 𝑤0 , 𝑝̇; 𝑤0) old weights 

  = ∑
1

2
(𝑤𝑖

0 + 𝑤𝑖
1)(

∆𝑤𝑖

𝑤̅𝑖
)∆𝑙𝑜𝑔𝑝𝑖 =  𝑐𝑜𝑣 (

∆𝑤

𝑤̅
, 𝑝̇; 𝑤̅) Törnqvist weights 

= ∑ 𝐿(𝑤𝑖
0, 𝑤𝑖

1)
∆𝑤𝑖

𝐿(𝑤𝑖
0 ,𝑤𝑖

1)
∆𝑙𝑜𝑔𝑝𝑖 = 𝑆 ∗ ∑

𝐿(𝑤𝑖
0,𝑤𝑖

1)

∑ 𝐿(𝑤𝑖
0,𝑤𝑖

1)
∆𝑙𝑜𝑔𝑤𝑖 ∗ ∆𝑙𝑜𝑔𝑝𝑖 =  𝑆 ∗ 𝑐𝑜𝑣(∆𝑙𝑜𝑔𝑤, 𝑝̇; 𝑤̂), 

where 𝑆 = ∑ 𝐿(𝑤𝑖
0, 𝑤𝑖

1) ≤ 1 and 𝑤̂𝑖 =
𝐿(𝑤𝑖

0,𝑤𝑖
1)

∑ 𝐿(𝑤𝑖
0,𝑤𝑖

1)
 = weights of the Sato-Vartia index. 

Proof: Covariance is defined as  𝑐𝑜𝑣(𝑥, 𝑦; 𝑤) = ∑ 𝑤𝑖(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅) = ∑ 𝑤𝑖(𝑥𝑖 − 𝑥̅)𝑦𝑖 , 

where the weights w are non-negative real numbers summing to unity and e.g. 𝑥̅ = ∑ 𝑤𝑖𝑥𝑖 = w-weighted 

mean of the variable x. Thus, ∑ 𝑤𝑖(𝑥𝑖 − 𝑥̅) = 0 is a characteristic property of any covariance. It implies 

 ∑ 𝑤𝑖(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅) =  ∑ 𝑤𝑖(𝑥𝑖 − 𝑥̅)𝑦𝑖 −  ∑ 𝑤𝑖(𝑥𝑖 − 𝑥̅) ∗ 𝑦̅ = ∑ 𝑤𝑖(𝑥𝑖 − 𝑥̅)𝑦𝑖 , i.e. only one of the 

variables x and y needs to be expressed in the deviation form!  

In all the expression above this zero-condition of the first variable applies, as in ∑
1

2
(𝑤𝑖

0 + 𝑤𝑖
1)(

∆𝑤𝑖

𝑤̅𝑖
) =

∑ ∆𝑤𝑖 = 1 − 1 = 0. This makes them all covariances of the denoted variables and weights. 

 

Next we prove the following intuitive results concerning the old and new variances 𝑠0
2(𝑝̇) = 𝑠2(𝑝̇, 𝑤0) and 

𝑠1
2(𝑝̇) = 𝑠2(𝑝̇, 𝑤1) and their approximations by 𝑠2(𝑝̇) = 𝑠2(𝑝̇, 𝑤̅) with the Törnqvist weights. They all 

become equal, or more accurately, their ratios approach unity, when they themselves approach zero while 

log-changes in prices and quantities approach any proportional values. Their accurate mathematical 

expression is somewhat tricky: 

 

Theorem 2: For all (𝑙𝑜𝑔𝑃, 𝑙𝑜𝑔𝑄) ∈ 𝑅2: 𝑝̈ → 𝑙𝑜𝑔𝑃 ∗ 1𝑛 𝑎𝑛𝑑 𝑞̈ → 𝑙𝑜𝑔𝑄 ∗ 1𝑛 implies 
𝑠1

2(𝑝̇)−𝑠0
2(𝑝̇)

𝑠2(𝑝̇)
→ 0. 

 

The condition 𝑝̈ → 𝑙𝑜𝑔𝑃 ∗ 1𝑛 means that for all commodities the log-change ∆𝑙𝑜𝑔𝑝𝑖 = 𝑝̈𝑖 approaches the 

same limit: 𝑝̈𝑖 = ∆𝑙𝑜𝑔𝑝𝑖 → 𝑙𝑜𝑔𝑃, or the log-deviation vector 𝑝̈ − 𝑙𝑜𝑔𝑃 ∗ 1𝑛 approaches a zero vector. This 

refers to almost proportional changes APC.  

 

Proof: 𝑠1
2(𝑝̇) − 𝑠0

2(𝑝̇) = ∑ 𝑤𝑖
1(∆𝑙𝑜𝑔𝑝𝑖 − ∆𝑙𝑜𝑔𝑝)2 − ∑ 𝑤𝑖

0(∆𝑙𝑜𝑔𝑝𝑖 − ∆𝑙𝑜𝑔𝑙)2 = ∑(𝑤𝑖
1 − 𝑤𝑖

0)(∆𝑙𝑜𝑔𝑝𝑖)2 +
(∆𝑙𝑜𝑔𝑝)2 − (∆𝑙𝑜𝑔𝑙)2 = ∑(𝑤𝑖

1 − 𝑤𝑖
0)(∆𝑙𝑜𝑔𝑝𝑖 − ∆𝑙𝑜𝑔𝑡)2 by a straight calculation left to the reader as an exercise 

(expand, sum and note definitions of ∆𝑙𝑜𝑔𝑙 and ∆𝑙𝑜𝑔𝑝). |∑(𝑤𝑖
1 − 𝑤𝑖

0)(∆𝑙𝑜𝑔𝑝𝑖 − ∆𝑙𝑜𝑔𝑡)2| = |∑ 𝑤̅𝑖(
∆𝑤𝑖

𝑤̅𝑖
)(∆𝑙𝑜𝑔𝑝𝑖 −

∆𝑙𝑜𝑔𝑡)2| ≤ ∑ 𝑤̅𝑖 |
∆𝑤𝑖

𝑤̅𝑖
| (∆𝑙𝑜𝑔𝑝𝑖 − ∆𝑙𝑜𝑔𝑡)2 ≤ ∑ 𝑤̅𝑖𝑚𝑎𝑥 |

∆𝑤𝑗

𝑤̅𝑗
| (∆𝑙𝑜𝑔𝑝𝑖 − ∆𝑙𝑜𝑔𝑡)2 = ∑ 𝑤̅𝑖(∆𝑙𝑜𝑔𝑝𝑖 − ∆𝑙𝑜𝑔𝑡)2 ∗

𝑚𝑎𝑥 |
∆𝑤𝑗

𝑤̅𝑗
| = 𝑠2(𝑝̇) ∗ 𝑚𝑎𝑥 |

∆𝑤𝑗

𝑤̅𝑗
| . Thus |

𝑠1
2(𝑝̇)−𝑠0

2(𝑝̇)

𝑠2(𝑝̇)
| ≤ 𝑚𝑎𝑥 |

∆𝑤𝑗

𝑤̅𝑗
| = 𝑚𝑎𝑥 |

𝐿(𝑤𝑗
0,𝑤𝑗

1)

𝑤̅𝑗
∗

∆𝑤𝑗

𝐿(𝑤𝑗
0,𝑤𝑗

1)
| = 𝑚𝑎𝑥 |

𝐿(𝑤𝑗
0 ,𝑤𝑗

1)

𝑤̅𝑗
∗

∆𝑙𝑜𝑔𝑤𝑗| = 𝑚𝑎𝑥 |
𝐿(𝑤𝑗

0,𝑤𝑗
1)

𝑤̅𝑗
(𝑝̇𝑗 + 𝑞̇𝑗)| ≤ 𝑚𝑎𝑥 |

𝐿(𝑤𝑗
0,𝑤𝑗

1)

𝑤̅𝑗
| ∗ 𝑚𝑎𝑥|(𝑝̇𝑗 + 𝑞̇𝑗)| → 1 ∗ 0 = 0, when all the deviations 

𝑝̇𝑖 = ∆𝑙𝑜𝑔𝑝𝑖 − ∆𝑙𝑜𝑔𝑡 and  𝑞̇𝑖 = ∆𝑙𝑜𝑔𝑞𝑖 − ∆𝑙𝑜𝑔𝑡𝑞 approach zero (implying 𝑤𝑖
1 →  𝑤𝑖

0). This proves the theorem. 
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Theorem 3: For all (𝑙𝑜𝑔𝑃, 𝑙𝑜𝑔𝑄) ∈ 𝑅2: 𝑝̈ → 𝑙𝑜𝑔𝑃 ∗ 1𝑛 𝑎𝑛𝑑 𝑞̈ → 𝑙𝑜𝑔𝑄 ∗ 1𝑛  implies 
𝑠1

2(𝑝̇)+𝑠0
2(𝑝̇)

2𝑠2(𝑝̇)
→ 1 . 

 

Proof: 
1

2
(𝑠1

2(𝑝̇) + 𝑠0
2(𝑝̇)) =

1

2
∑ 𝑤𝑖

1(∆𝑙𝑜𝑔𝑝𝑖 − ∆𝑙𝑜𝑔𝑝)2 +
1

2
∑ 𝑤𝑖

0(∆𝑙𝑜𝑔𝑝𝑖 − ∆𝑙𝑜𝑔𝑙)2 

=
1

2
∑(𝑤𝑖

1 + 𝑤𝑖
0)(∆𝑙𝑜𝑔𝑝𝑖)2 − (∆𝑙𝑜𝑔𝑝)2 − (∆𝑙𝑜𝑔𝑙)2 =

1

2
∑(𝑤𝑖

1 + 𝑤𝑖
0)(∆𝑙𝑜𝑔𝑝𝑖 − ∆𝑙𝑜𝑔𝑡)2 + (∆𝑙𝑜𝑔𝑡)2 − (∆𝑙𝑜𝑔𝑝)2 −

(∆𝑙𝑜𝑔𝑙)2 = 𝑠2(𝑝̇) −
1

4
(𝑙𝑜𝑔𝑝 − 𝑙𝑜𝑔𝑙)2 = 𝑠2(𝑝̇) −

1

4
(𝑐𝑜𝑣 (

∆𝑤

𝑤̅
, 𝑝̇; 𝑤̅))

2

. Thus |
𝑠1

2(𝑝̇)+𝑠0
2(𝑝̇)

2𝑠2(𝑝̇)
| = |1 −

1

4𝑠2(𝑝̇)
(𝑐𝑜𝑣 (

∆𝑤

𝑤̅
, 𝑝̇; 𝑤̅))

2

| ≤ 1 + |
1

4
(𝑠2 (

∆𝑤

𝑤̅
; 𝑤̅) 𝑟2 (

∆𝑤

𝑤̅
, 𝑝̇; 𝑤̅))| ≤

1

4
𝑠2 (

∆𝑤

𝑤̅
; 𝑤̅) → 0 when all the deviations 

𝑝̇𝑖 = ∆𝑙𝑜𝑔𝑝𝑖 − ∆𝑙𝑜𝑔𝑡 and  𝑞̇𝑖 = ∆𝑙𝑜𝑔𝑞𝑖 − ∆𝑙𝑜𝑔𝑡𝑞 approach zero (implying 𝑤𝑖
1 →  𝑤𝑖

0 for all i). This proves the 

theorem. 

 

 

Theorem 4: For all (𝑙𝑜𝑔𝑃, 𝑙𝑜𝑔𝑄) ∈ 𝑅2: 𝑝̈ → 𝑙𝑜𝑔𝑃 ∗ 1𝑛 𝑎𝑛𝑑 𝑞̈ → 𝑙𝑜𝑔𝑄 ∗ 1𝑛  implies 

 
𝑠1

2(𝑝̇)

𝑠2(𝑝̇)
→ 1 and 

𝑠0
2(𝑝̇)

𝑠1
2(𝑝̇)

→ 1. 

 

Proof: Insert identity 𝑠1
2(𝑝̇) =

1

2
(𝑠1

2(𝑝̇) + 𝑠0
2(𝑝̇)) +

1

2
(𝑠1

2(𝑝̇) − 𝑠0
2(𝑝̇)) into  

𝑠1
2(𝑝̇)

𝑠2(𝑝̇)
=

𝑠1
2(𝑝̇)+𝑠0

2(𝑝̇)

2𝑠2(𝑝̇)
+

𝑠1
2(𝑝̇)−𝑠0

2(𝑝̇)

2𝑠2(𝑝̇)
 . 

By theorems 2 and 3, this approaches 1+0 = 1 for APC, which proves 
𝑠1

2(𝑝̇)

𝑠2(𝑝̇)
→ 1. Similarly 

𝑠0
2(𝑝̇)

𝑠2(𝑝̇)
→ 1. 

 

Now we are ready to state and prove the main result that Törnqvist t and Fisher F approximate each other 

quadratically for almost proportional changes and thus for all small changes. The proof is short and elegant: 

 

Theorem 5: For all  (𝑙𝑜𝑔𝑃, 𝑙𝑜𝑔𝑄) ∈ 𝑅2: 𝑝̈ → 𝑙𝑜𝑔𝑃 ∗ 1𝑛 𝑎𝑛𝑑 𝑞̈ → 𝑙𝑜𝑔𝑄 ∗ 1𝑛  the limes 𝑙𝑖𝑚𝐴𝑃𝐶𝑆ℎ𝑖𝑓𝑡(𝑡, 𝐹) 

exists and equals zero. Thus, Törnqvist t is superlative for almost proportional changes. Therefore, it is also 

unbiased for small changes or 𝑙𝑖𝑚𝑆𝐶𝑆ℎ𝑖𝑓𝑡(𝑡, 𝐹) = 0 . 

 

Proof:  By the properties of moment means  

A 𝑙𝑜𝑔𝑃𝑎 − 𝑙𝑜𝑔𝑝 = −
1

2
𝑠1

2(𝑝̇) + 𝑜2 and 𝑙𝑜𝑔𝐿 − 𝑙𝑜𝑔𝑙 = 1

2
𝑠0

2(𝑝̇) + 𝑜2,  

where 𝑜2 = 𝑜2(𝑝̇, 𝑞̇) means any expression, which goes to zero faster than the variance (or sum of squares) 

of 𝑝̇ when both (𝑝̇, 𝑞̇) approach zero, i.e. 𝑠2(𝑝̇) → 0 and 𝑠2(𝑞̇) → 0 . Thus 𝑜2/𝑠2(𝑝̇) → 0  when the 

denominator and 𝑠2(𝑞̇) approach zero. Summing equations A, and dividing by two gives 

𝑙𝑜𝑔𝐹 − 𝑙𝑜𝑔𝑡 = −1

4
(𝑠1

2(𝑝̇) − 𝑠0
2(𝑝̇)) + 𝑜2 . 𝑆ℎ𝑖𝑓𝑡(𝑡, 𝐹) =

2 log(
𝑡

𝐹
)

𝑠2(𝑝̇,𝑤̅)
= 1

2

(𝑠1
2(𝑝̇)−𝑠0

2(𝑝̇))

𝑠2(𝑝̇,𝑤̅)
+

𝑜2

𝑠2(𝑝̇,𝑤̅)
 . Now by 

Theorem 1, 𝑙𝑖𝑚𝐴𝑃𝐶𝑆ℎ𝑖𝑓𝑡(𝑡, 𝐹) = 0 + 0 = 0 .  

 

Theorem 6: The moment means 𝑀(𝛼)(𝑝1 0⁄  , 𝑤̅) = (∑
1

2
(𝑤𝑖

0 + 𝑤𝑖
1)(

𝑝𝑖
1

𝑝𝑖
0)𝛼)

1/𝛼

 with Törnqvist weights are 

permanently biased upwards for all 𝛼 > 0 and downwards for 𝛼 < 0. This is an infinite set (continuum) of 

permanently biased indices. The permanent bias, which equals 𝛼, is small only when it is nearly zero (the 

superlative Törnqvist index case). This implies that the Törnqvist weights (average value shares) are correct 

weights only for the geometric index (= Törnqvist index). 

 

Proof: Apply (4) for Törnqvist weights and get 𝑙𝑜𝑔
𝑀(𝛼)(𝑝1/0,𝑤̅)

𝑡
= 𝛼 𝑠2(𝑝̇, 𝑤̅) + 𝑜2 and 

𝑆ℎ𝑖𝑓𝑡(𝑀(𝛼)(𝑝1/0, 𝑤̅), 𝑡) = 𝑆ℎ𝑖𝑓𝑡(𝑀(𝛼)(𝑝1/0, 𝑤̅), 𝐹) + 𝑆ℎ𝑖𝑓𝑡(𝐹, 𝑡) = 𝛼 + 𝑆ℎ𝑖𝑓𝑡(𝐹, 𝑡) + 𝑜2/𝑠2(𝑝̇, 𝑤̅) → 𝛼 , 

by theorem 5 when both (𝑝̇, 𝑞̇) approach zero. Thus, its limit exists and equals a constant 𝛼, which is the 

value of the permanent bias. This proves the theorem. 

 

Theorem 7:  log (
𝑝

𝑙
) =  𝑐𝑜𝑣(𝑣̇, 𝑝̇; 𝑤̅) + 𝑜2 = 𝑐𝑜𝑣(𝑝̇, 𝑞̇; 𝑤̅) + 𝑠2(𝑝̇, 𝑤̅) + 𝑜2 and therefore, e.g. 
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𝑆ℎ𝑖𝑓𝑡(𝑝, 𝑡) → 𝑆ℎ𝑖𝑓𝑡(𝑝, 𝐹) →
𝑐𝑜𝑣(𝑣̇,𝑝̇;𝑤̅)

𝑠2(𝑝̇,𝑤̅)
 when deviations in price and quantity log-changes 

approach zero or APC. 

 

Proof: Recall the basic properties of cosh and sinh: 

 

cosh(𝑧) =
1

2
(exp(𝑧) + exp(−𝑧)) = 1 + 

1

2!
𝑧2 +

1

4!
𝑧4 + ⋯ and 

sinh(𝑧) =
1

2
(exp(𝑧) − exp(−𝑧)) = 𝑧 + 

1

3!
𝑧3 +

1

5!
𝑧5 + ⋯ 

 

First 𝑤̅/√𝑤0𝑤1 =
1

2
(√

𝑤1

𝑤0
+ √

𝑤0

𝑤1
) =

1

2
(exp (

1

2
log (

𝑤1

𝑤0
) + exp (−

1

2
log (

𝑤1

𝑤0
)) =

1

2
(exp(𝑧) + exp(−𝑧)) 

= cosh(𝑧) for 𝑧 =
1

2
log (

𝑤1

𝑤0
) =

1

2
∆log 𝑤 . Thus 

𝑤̅

√𝑤0𝑤1
= 1 +

1

8
𝑙𝑜𝑔 (

𝑤1

𝑤0
)

2

+ ⋯ = 1 +
1

8
𝑤̈2 + 𝑜2 .  

Similarly 
𝐿(𝑤0 ,𝑤1)

√𝑤0𝑤1
= 𝐿 (√

𝑤1

𝑤0
, √

𝑤0

𝑤1
) = 𝐿(exp (

1

2
log (

𝑤1

𝑤0
) , exp (−

1

2
log (

𝑤1

𝑤0
)) = 𝐿(exp(𝑧), exp(−𝑧)) = sinh(𝑧)/𝑧 . Thus

 
𝐿(𝑤0 ,𝑤1)

√𝑤0𝑤1
= 1 + 

1

3!
𝑧2 + ⋯ = 1 +

1

24
𝑤̈2 + 𝑜2 and 

𝐿(𝑤0,𝑤1)

𝑤̅
=

𝐿(𝑤0,𝑤1)

√𝑤0𝑤1

√𝑤0𝑤1

𝑤̅
=

𝐿(𝑤0,𝑤1)

√𝑤0𝑤1
/

𝑤̅

√𝑤0𝑤1
 . 

 

Therefore  
𝐿(𝑤0,𝑤1)

𝑤̅
= 1 +

1

24
𝑤̈2 −

1

8
𝑤̈2 + ⋯  = 1 −

1

12
𝑤̈2 + ⋯ and by theorem 1 𝑙𝑜𝑔𝑝 − 𝑙𝑜𝑔𝑙 =

∑
1

2
(𝑤𝑖

0 + 𝑤𝑖
1) (

∆𝑤𝑖

𝑤̅𝑖
) 𝑝̇

𝑖
 = ∑

1

2
(𝑤𝑖

0 + 𝑤𝑖
1) (

∆𝑤𝑖

𝐿(𝑤𝑖
0,𝑤𝑖

1)
)

𝐿(𝑤𝑖
0,𝑤𝑖

1)

𝑤̅𝑖
𝑝̇

𝑖
= ∑

1

2
(𝑤𝑖

0 + 𝑤𝑖
1)∆𝑙𝑜𝑔𝑤𝑖(1 +

1

12
𝑤̈𝑖

2)𝑝̇
𝑖

+

𝑜2 = ∑
1

2
(𝑤𝑖

0 + 𝑤𝑖
1)∆𝑙𝑜𝑔𝑣𝑖 𝑝̇

𝑖
+ 𝑜2 = 𝑐𝑜𝑣(𝑣̇, 𝑝̇; 𝑤̅) + 𝑜2 . Insert this in 𝑆ℎ𝑖𝑓𝑡(𝑝, 𝑡) =

log(
𝑝

𝑡
)

1

2
𝑠2(𝑝̇,𝑤̅)

=
1

2
log(

𝑝

𝑙
)

1

2
𝑠2(𝑝̇,𝑤̅)

=

𝑐𝑜𝑣(𝑣̇,𝑝̇;𝑤̅)

𝑠2(𝑝̇,𝑤̅)
+

𝑜2

𝑠2(𝑝̇,𝑤̅)
 . Now let deviations in price and quantity log-changes approach zero without altering 

their essential mutual dependencies, such as correlation and the ratio of deviations. Then 𝑆ℎ𝑖𝑓𝑡(𝑝, 𝑡) →
𝑐𝑜𝑣(𝑣̇,𝑝̇;𝑤̅)

𝑠2(𝑝̇,𝑤̅)
, which is not a unique real number, but a contingent data-dependent function. Or alter them to get 

some other limit. This proves that a unique limit does not exist and p is contingently biased in respect to t or 

equivalently in respect to Fisher. This proves the theorem for APC and thus for SC. 

. 

Theorem 8:  log (
𝑃𝑎

𝐿
) =  𝑐𝑜𝑣(𝑝̇, 𝑞̇; 𝑤̅) + 𝑜2 and therefore, e.g. 𝑆ℎ𝑖𝑓𝑡(𝑃𝑎, 𝐹) →

𝑐𝑜𝑣(𝑝̇,𝑞̇;𝑤̅)

𝑠2(𝑝̇,𝑤̅)
 when deviations 

in price and quantity log-changes approach zero or APC. 

 

Proof: Subtracting equations A gives by theorems 2 and 6: 𝑙𝑜𝑔𝑃𝑎 − 𝑙𝑜𝑔𝐿 = 𝑙𝑜𝑔𝑝 − 𝑙𝑜𝑔𝑙 −1

2
(𝑠1

2(𝑝̇) +

𝑠0
2(𝑝̇)) + 𝑜2 = 𝑐𝑜𝑣(𝑣̇, 𝑝̇; 𝑤̅) − 𝑠2(𝑝̇, 𝑤̅) + 𝑜2 = 𝑐𝑜𝑣(𝑝̇, 𝑞̇; 𝑤̅) + 𝑜2 . The 𝑆ℎ𝑖𝑓𝑡(𝑃𝑎, 𝐹) and its limit behavior 

follows just like in theorem 7. 
 

Theorem 9:  Drobish 𝐷𝑟 =
1

2
(𝐿 + 𝑃𝑎) is superlative for APC and thus for SC. It has a very appealing 

basket interpretation 𝐷𝑟 =
𝑝1∙(𝑞0+𝑞1/𝐿(𝑞))

𝑝0∙(𝑞0+𝑞1/𝐿(𝑞))
  in contrast to Fisher. It is an example of a superlative index 

fulfilling neither Time Reversal nor Quantity Reversal Tests. 

Proof:  
𝐷𝑟

𝐹
=  

1

2
(

𝐿

𝐹
+

𝑃𝑎

𝐹
) =

1

2
(√

𝐿

𝑃𝑎
+ √

𝑃𝑎

𝐿
) =

1

2
(exp (

1

2
𝑙𝑜𝑔

𝐿

𝑃𝑎
) + exp (−

1

2
𝑙𝑜𝑔

𝐿

𝑃𝑎
)) =

1

2
(exp(𝑧) + exp(−𝑧)) 

 = cosh(𝑧) = 1 + 
1

2!
𝑧2 +

1

4!
𝑧4 + ⋯ = 1 +

1

8
(𝑙𝑜𝑔

𝐿

𝑃𝑎
)2 + 𝑜2 as in theorem 7. 

 log (
𝐷𝑟

𝐹
) = log (1 +

1

8
(𝑙𝑜𝑔

𝐿

𝑃𝑎
)2 + 𝑜2 ) =

1

8
(𝑙𝑜𝑔

𝐿

𝑃𝑎
)2 + 𝑜2  =

1

8
𝑐𝑜𝑣(𝑝̇, 𝑞̇)2 + 𝑜2 by theorem 8. 

𝑆ℎ𝑖𝑓𝑡(𝐷𝑟 , 𝐹) =  
2log(

𝐷𝑟

𝐹
)

𝑠2(𝑝̇,𝑤̅)
=

1

4

𝑐𝑜𝑣(𝑝̇,𝑞̇,𝑤̅)2+𝑜2

𝑠2(𝑝̇,𝑤̅)
=

1

4

(𝑠(𝑝̇)𝑠(𝑞̇)𝑟(𝑝̇,𝑞̇))2+𝑜2

𝑠2(𝑝̇)
 =

1

4
𝑠2(𝑞̇)𝑟(𝑝̇, 𝑞̇)2  +

𝑜2

𝑠2(𝑝̇)
. 

This approaches zero when for all (𝑙𝑜𝑔𝑃, 𝑙𝑜𝑔𝑄) ∈ 𝑅2: 𝑝̈ → 𝑙𝑜𝑔𝑃 ∗ 1𝑛 𝑎𝑛𝑑 𝑞̈ → 𝑙𝑜𝑔𝑄 ∗ 1𝑛 or when 𝑠2(𝑝̇) 

and 𝑠2(𝑞̇) both go to zero. We have proved that 𝑙𝑖𝑚𝐴𝑃𝐶𝐵𝑖𝑎𝑠(𝐷𝑟 , 𝐹) exists and equals zero. This means, that 

Drobish is unbiased for APC and thus for SC.  

 



29 

 

 

Theorem 10: Similarly constructed logarithmic mean 𝐿(𝐿, 𝑃𝑎) of Laspeyres and Paasche, which lies between 

Dr and F (and is thus even nearer to F than Dr) is superlative for APC and thus for SC. It does not have a 

basket interpretation and does not fulfill Time Reversal or Quantity Reversal Tests. 

 

Proof: Because 𝐷𝑟 ≥ 𝐿(𝐿, 𝑃𝑎) ≥ 𝐹 also log (
𝐷𝑟

𝐹
) ≥ log (

𝐿(𝐿,𝑃𝑎)

𝐹
) ≥ 0 and 𝑆ℎ𝑖𝑓𝑡(𝐷𝑟, 𝐹) ≥

𝑆ℎ𝑖𝑓𝑡(𝐿(𝐿, 𝑃𝑎), 𝐹) ≥ 0 . Therefore, by the previous theorem, both shifts approach zero when 𝑠2(𝑝̇) and 

𝑠2(𝑞̇) both approach zero. 

 

Theorem 11: Any evenly weighted moment mean 𝑀(𝛼)(𝐿, 𝑃𝑎) or 𝑀(𝛼)(𝑙, 𝑝) with parameter 𝛼 ∈ [0,1] is 

superlative for APC and thus for SC. For the parameter 𝛼 smaller than 1 (= the arithmetic mean), the moment 

mean is nearer to F and t. This produces an infinite number of superlative indices. 

 

Proof: 𝑀(𝛼)(𝐿, 𝑃𝑎) proved like in Theorem 10 and 𝑀(𝛼)(𝑙, 𝑝) like in theorem 9. 

 

Theorem 12:  “Vartia-Walsh” 𝑙𝑜𝑔𝑉𝑊 = ∑ √𝑤𝑖
0 𝑤𝑖

1 ∆𝑙𝑜𝑔𝑝
𝑖
 is superlative for SC but not for APC. 

 

Proof: From theorem 6  
 

 
√𝑤0𝑤1

𝑤̅
= 1 −

1

8
𝑤̈2 + 𝑜2  and  

1

8
𝑤̈2 = 1 −

√𝑤0𝑤1

𝑤̅
+ 𝑜2 . For simplicity, we drop the commodity 

sub-indices. 

log(𝑡) − 𝑙𝑜𝑔VW = ∑ 𝑤̅∆𝑙𝑜𝑔𝑝 − ∑ √𝑤0𝑤1 ∆𝑙𝑜𝑔𝑝 

= ∑ (𝑤̅ − √𝑤0𝑤1 ) ∆𝑙𝑜𝑔𝑝 = ∑ 𝑤̅ (1 −
√𝑤0𝑤1

𝑤̅
 ) ∆𝑙𝑜𝑔𝑝 = −

1

8
∑ 𝑤̅𝑤̈2∆𝑙𝑜𝑔𝑝 + 𝑜2 

Here the dotted variables are log-deviations from mean, not mere log-changes. This difference causes first 

difficulties. 𝑆ℎ𝑖𝑓𝑡(VW, 𝑡) =  =
−

1

8
∑ 𝑤̅ 𝑤̈2∆𝑙𝑜𝑔𝑝+𝑜2 

1

2
𝑠2( 𝑝̇)

 and −4𝑆ℎ𝑖𝑓𝑡(VW, 𝑡) = 
∑ 𝑤̅ 𝑤̈2∆𝑙𝑜𝑔𝑝+𝑜2 

𝑠2( 𝑝̇)
 .  

∑ 𝑤̅ 𝑤̈2 = ∑ 𝑤̅(𝑣̈ − 𝑙𝑜𝑔
𝑉1

𝑉0)2 = ∑ 𝑤̅ 𝑣̇2 + 𝑜2 = 𝑣𝑎𝑟(𝑣̈; 𝑤̅) + 𝑜2 = ∑ 𝑤̅ (𝑝̈2 + 2𝑝̈𝑞̈ + 𝑞̈2) + 𝑜2 = 𝑣𝑎𝑟(𝑝̈) +

2𝑐𝑜𝑣(𝑝̈, 𝑞̈) + 𝑣𝑎𝑟(𝑞̈) + 𝑜2 . Here we could equally well have single dots instead of double dots, because e.g. 

𝑣𝑎𝑟(𝑝̈) = 𝑣𝑎𝑟(𝑝̇). By triangle inequality  |
∑ 𝑤̅ 𝑤̈2∆𝑙𝑜𝑔𝑝+𝑜2 

𝑠2(𝑝̇)
| ≤

∑ 𝑤̅ 𝑤̈2|∆𝑙𝑜𝑔𝑝|+|𝑜2| 

𝑠2(𝑝̇)
≤

(∑ 𝑤̅ 𝑤̈2)𝑚𝑎𝑥|∆𝑙𝑜𝑔𝑝|+𝑜2 

𝑠2(𝑝̇)
≤

(1 + 2
𝑠(𝑞̇)

𝑠(𝑝̇)
+

𝑠2(𝑞̇)

𝑠2(𝑝̇)
) 𝑚𝑎𝑥|∆𝑙𝑜𝑔𝑝| +

𝑜2

𝑠2(𝑝̇)
 . Suppose that that the log-changes approach zero so that  

𝑠2(𝑞̇)

𝑠2(𝑝̇)
≤ 𝐾, say 

≤ 400. Then |
∑ 𝑤̅ 𝑤̈2∆𝑙𝑜𝑔𝑝+𝑜2 

𝑠2( 𝑝̇)
| ≤ (1 + 2√𝐾 + 𝐾)𝑚𝑎𝑥|∆𝑙𝑜𝑔𝑝| +

𝑜2

𝑠2( 𝑝̇)
 , which approaches zero when all changes 

of  log-prices and log-quantities approach zero. Because this holds for all choices of K, it does not restrict the 

limit processes in any way and 𝐿𝑖𝑚𝑆𝐶𝑆ℎ𝑖𝑓𝑡(VW, 𝑡) = 𝐿𝑖𝑚𝑆𝐶𝑆ℎ𝑖𝑓𝑡(VW, 𝐹) = 0. 

 

Corollary:  “Vartia-Walsh” 𝑙𝑜𝑔𝑉𝑊 = ∑ √𝑤𝑖
0 𝑤𝑖

1 ∆𝑙𝑜𝑔𝑝
𝑖
 is probably the simplest superlative index for SC 

which is consistent in aggregation CA. Its weights have many interesting expressions, but sum at most to 

unity. 

 

Theorem 13:  Montgomery-Vartia index 𝑙𝑜𝑔𝑀𝑉 = ∑ 𝑤̂𝑖 ∆𝑙𝑜𝑔𝑝
𝑖

, 𝑤̂𝑖 = 𝐿(𝑣𝑖
0, 𝑣𝑖

1)/𝐿(𝑉𝑜, 𝑉1) is superlative for 

SC but not for APC. 

 

Proof:  By similar argumentation as above 𝑆ℎ𝑖𝑓𝑡(MV, 𝑡) =  =
−

1

24
∑ 𝑤̅ 𝑤̇2∆𝑙𝑜𝑔𝑝+𝑜2 

1

2
𝑠2( 𝑝̇)

 from which the claim follows 

similarly. It is usually nearer to Törnqvist than “Vartia-Walsh”. 
 

Theorem 14:  Consider any two superlative indices 𝑃1 and 𝑃2 . Any value between them may be produced by 

some superlative index. Especially, their weighted mean (or convex combination) 𝑃(𝜃) =

𝜃𝑃1 +(1-𝜃)𝑃2 ,  where 0 ≤ 𝜃 ≤ 1 is such a superlative index. 

 



30 

 

 

Proof: Because 0 ≤ |log (𝑃(𝜃), 𝐹)| ≤ 𝑚𝑎𝑥|log (𝑃𝑖, 𝐹)|, both the corresponding shifts approach zero 

by assumption of superlatively of 𝑃1 and 𝑃2 . 

 

Theorem 15:  Consider geometric means between any two old and new weighted moment mean indices 

(expressed in log-form) 𝑙𝑜𝑔𝑃0 (𝛼) =
1

𝛼
𝑙𝑜𝑔 ∑ 𝑤𝑖

0(
𝑝𝑖

1

𝑝𝑖
0)

𝛼

 and 𝑙𝑜𝑔𝑃1 (𝛼) =
1

𝛼
𝑙𝑜𝑔 ∑ 𝑤𝑖

1(
𝑝𝑖

1

𝑝𝑖
0)

𝛼

 . Especially, combine 

𝑙𝑜𝑔𝐿 = 𝑙𝑜𝑔𝑃0 (1) with 𝑙𝑜𝑔𝑃1 (−1 + 𝛿), which produce √𝑃0 (1)𝑃1 (−1 + 𝛿). For 𝛿 = 0 this is the superlative 

index F, because 𝑃1 (−1) = 𝑇𝐴(𝑃0 (1)). For all other values of 𝛿 it has a permanent bias, which is upwards if 

𝛿 > 0 and downwards if 𝛿 < 0. All this is expressed shortly as 𝑆ℎ𝑖𝑓𝑡𝐴𝑃𝐶(√𝑃0 (1)𝑃1 (−1 + 𝛿), 𝐹) =
𝛿

2
 . 

 

This is a special case 𝛼 = 1 of the next theorem. 

 

Theorem 16:  Consider geometric means between any two old and new weighted moment mean indices 

(expressed in log-form) 𝑙𝑜𝑔𝑃0 (𝛼) =
1

𝛼
𝑙𝑜𝑔 ∑ 𝑤𝑖

0(
𝑝𝑖

1

𝑝𝑖
0)

𝛼

 and 𝑙𝑜𝑔𝑃1 (𝛼) =
1

𝛼
𝑙𝑜𝑔 ∑ 𝑤𝑖

1(
𝑝𝑖

1

𝑝𝑖
0)

𝛼

 . Especially, combine 

𝑙𝑜𝑔𝑃0 (𝛼) with 𝑙𝑜𝑔𝑃1 (−𝛼 + 𝛿), which produce √𝑃0 (𝛼)𝑃1 (−𝛼 + 𝛿). For 𝛿 = 0 this is a superlative index, 

because 𝑃1 (−𝛼) = 𝑇𝐴(𝑃0 (𝛼)). For all other values of 𝛿 it has a permanent bias, which is upwards if 𝛿 > 0 

and downwards if 𝛿 < 0. All this is expressed shortly as 𝑆ℎ𝑖𝑓𝑡𝐴𝑃𝐶(√𝑃0 (𝛼)𝑃1 (−𝛼 + 𝛿), 𝐹) =
𝛿

2
 . 

Proof: We have 𝑙𝑜𝑔
𝑃0 (𝛼)

𝑃0 (0)
= 

𝛼

2
𝑠0

2(𝑝̇) + 𝑜2 and 𝑙𝑜𝑔
𝑃1 (−𝛼+𝛿)

𝑃1 (0)
= 

−𝛼+𝛿

2
𝑠1

2(𝑝̇) + 𝑜2. Summing and dividing by 

two gives 𝑙𝑜𝑔√𝑃0 (𝛼)𝑃1 (−𝛼 + 𝛿) − 𝑙𝑜𝑔𝑡 =  
𝛼

4
𝑠0

2(𝑝̇) +
−𝛼+𝛿

4
𝑠1

2(𝑝̇) + 𝑜2 =
𝛼

4
(𝑠0

2(𝑝̇) − 𝑠1
2(𝑝̇)) +

𝛿

4
𝑠1

2(𝑝̇) + 𝑜2 . By 

theorems 2, 4 and 5: 𝑆ℎ𝑖𝑓𝑡𝐴𝑃𝐶 (√𝑃0 (𝛼)𝑃1 (−𝛼 + 𝛿), 𝐹) =
𝛿

2
 .  

 

Corollary: All indices of the form √𝑃0 (𝛼)𝑃1 (𝛽) are permanently biased, unless if 𝛽 = −𝛼, when they are 

superlative. In concrete applications parameters are usually small, roughly 𝛼, 𝛽 ∈ [−2, 2] or even [−1, 1]. 
 

Theorem 17:  Evenly weighted geometric mean of price relatives Ge and similar geometric 

 mean with arbitrary constant weights 𝐺𝑒(𝑐) are freakish for small changes and have a serious contingent 

bias. 

Proof: We have to show only that 𝑆ℎ𝑖𝑓𝑡(Ge, 𝑡) approaches ±∞ for some arguments 𝑝̈, 𝑞̈ approaching 

zero. We have 𝑙𝑜𝑔𝐺𝑒 = ∑ 1

𝑛
∆𝑙𝑜𝑔𝑝𝑖 , log(𝐺𝑒 𝑡⁄ ) = ∑(1

𝑛
− 𝑤̅𝑖)∆𝑙𝑜𝑔𝑝

𝑖
  and 𝑠2(𝑝̇) = ∑ 𝑤̅𝑖  (∆𝑙𝑜𝑔𝑝𝑖)2 −

(∑ 𝑤̅𝑖 ∆𝑙𝑜𝑔𝑝𝑖)2. Suppose that only the components of one commodity i differ from zero. These imply 

𝑆ℎ𝑖𝑓𝑡(Ge, 𝑇𝑜) =
2(1

𝑛−𝑤̅𝑖)∆𝑙𝑜𝑔𝑝𝑖

𝑠2(𝑝̇)
=

2(1
𝑛−𝑤̅𝑖)∆𝑙𝑜𝑔𝑝𝑖

𝑤̅𝑖 (∆𝑙𝑜𝑔𝑝𝑖)2−(𝑤̅𝑖 ∆𝑙𝑜𝑔𝑝𝑖)2 =
2(1

𝑛−𝑤̅𝑖)

𝑤̅𝑖(1−𝑤̅𝑖)∆𝑙𝑜𝑔𝑝𝑖
→ ±∞ (if 1

𝑛
≠ 𝑤̅𝑖 > 0) when ∆𝑙𝑜𝑔𝑝𝑖 → 0 . 

Because the even weight differs from the Törnqvist weight, the shift of the evenly weighted geometric mean 

Ge explores. It has a serious contingent bias. The result for 𝑙𝑜𝑔𝐺𝑒(𝑐) = ∑ 𝑐𝑖∆𝑙𝑜𝑔𝑝𝑖  ∑ 𝑐𝑖 = 1 , 𝑐𝑖 ≥ 0is proved 

similarly. 
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Appendix 2: A 10-fork of six basic formulas and their FA´s. 
 

All these 12 – 2 = 10 indices (L and Pa appear twice in 12) can be estimated (with increasing accuracy for 

progressively smaller changes) using only four parameters:  

 

𝑚 = 𝑙𝑜𝑔𝑡, 𝑑 = log (
𝑝

𝑙
) ≅ 𝑐𝑜𝑣(𝑣,̇ 𝑝;̇  𝑤̅), ∆(𝑝) = 𝑐𝑜𝑣(𝑝,̇ 𝑝;̇  𝑤̅)/2, ∆(𝑞) = 𝑐𝑜𝑣(𝑞,̇ 𝑞;̇  𝑤̅)/2.  

 

We have recursively 𝑙𝑜𝑔𝑝 = 𝑚 + 𝑑/2, 𝑙𝑜𝑔𝑙 = 𝑚 − 𝑑/2, 𝑙𝑜𝑔𝑃𝑙 = 𝑙𝑜𝑔𝑝 + ∆(𝑝), 𝑙𝑜𝑔𝑃𝑎 = 𝑙𝑜𝑔𝑝 − ∆(𝑝), 

𝑙𝑜𝑔𝐿 = 𝑙𝑜𝑔𝑙 + ∆(𝑝), 𝑙𝑜𝑔𝐿ℎ = 𝑙𝑜𝑔𝑙 − ∆(𝑝). 

 

FA´s differ from each other by ∆(𝑞):  𝑙𝑜𝑔𝐹𝐴(𝐿) = 𝑙𝑜𝑔𝑃𝑎, 𝑙𝑜𝑔𝐹𝐴(𝑃𝑎) = 𝑙𝑜𝑔𝐿, 𝑙𝑜𝑔𝐹𝐴(𝑙) = 𝑙𝑜𝑔𝑃𝑎 + ∆(𝑞), 

𝑙𝑜𝑔𝐹𝐴(𝑝) = 𝑙𝑜𝑔𝐿 − ∆(𝑞), 𝑙𝑜𝑔𝐹𝐴(𝐿ℎ) = 𝑙𝑜𝑔𝑃𝑎 + 2∆(𝑞), , 𝑙𝑜𝑔𝐹𝐴(𝑃𝑙) = 𝑙𝑜𝑔𝐿 − 2∆(𝑞). 

 

All these indices are clearly biased, more or less depending on the situation. They all can be corrected for bias 

by TA-rectification, which implies that none of them should be ever used (in case of complete micro data). 

This is the starting point of our new “quantum theory of index numbers” for six base indices and their FA´s, 

which replaces the false “Fisher´s Five-tined Fork”. It must be completed by including “the center of gravity”  

𝑚 = 𝑙𝑜𝑔𝑡 and other new points corresponding to derivative indices. It is a rather complicated set of points and 

gets different forms for different values of its four parameters (𝑚, 𝑑, ∆(𝑝), ∆(𝑞)). It reduces to Fisher´s Five-

tined Fork for the two-parametric case (𝑚, 𝑑 = 2∆(𝑝) = 2∆(𝑞)). 

 

 

Appendix 3: TA and FA for the basic six formulas 
 

Table 1:  Time Antithesis formulas TA for the basic six formulas. 
 

(1) (2) (3) (4) (5) 

 𝑃1/0 𝑃0/1 1/ 𝑃0/1  

Symbol of 

the formula 
𝑓 (

𝑝1 𝑞1

𝑝0 𝑞0) 𝑓 (
𝑝0 𝑞0

𝑝1 𝑞1) 

 

1/𝑓 (
𝑝0 𝑞0

𝑝1 𝑞1) 
Symbol of 

the TA formula 

L 𝑝1 ∙ 𝑞0

𝑝0 ∙ 𝑞0
 

𝑝0 ∙ 𝑞1

𝑝1 ∙ 𝑞1
 

𝑝1 ∙ 𝑞1

𝑝0 ∙ 𝑞1
 

𝑃𝑎 = 𝑇𝐴(𝐿) 

l 
∏(

𝑝𝑖
1

𝑝𝑖
0)𝑤𝑖

0
 ∏(

𝑝𝑖
0

𝑝𝑖
1)𝑤𝑖

1
 ∏(

𝑝𝑖
1

𝑝𝑖
0)𝑤𝑖

1
 

𝑝 = 𝑇𝐴(𝑙) 

Lh 1/ ∑ 𝑤𝑖
0𝑝𝑖

0/1
 1/ ∑ 𝑤𝑖

1𝑝𝑖
1/0

 ∑ 𝑤𝑖
1𝑝𝑖

1/0
 𝑃𝑙 = 𝑇𝐴(𝐿ℎ) 

Pl ∑ 𝑤𝑖
1𝑝𝑖

1/0
 ∑ 𝑤𝑖

0𝑝𝑖
0/1

 1/ ∑ 𝑤𝑖
0𝑝𝑖

0/1
 𝐿ℎ = 𝑇𝐴(𝑃𝑙) 

p 
∏(

𝑝𝑖
1

𝑝𝑖
0)𝑤𝑖

1
 ∏(

𝑝𝑖
0

𝑝𝑖
1)𝑤𝑖

0
 ∏(

𝑝𝑖
1

𝑝𝑖
0)𝑤𝑖

0
 

𝑙 = 𝑇𝐴(𝑝) 

 Pa 𝑝1 ∙ 𝑞1

𝑝0 ∙ 𝑞1
 

𝑝0 ∙ 𝑞0

𝑝1 ∙ 𝑞0
 

𝑝1 ∙ 𝑞0

𝑝0 ∙ 𝑞0
 

𝐿 = 𝑇𝐴(𝑃𝑎) 
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Table 2:  Factor Antithesis formulas FA for the basic six formulas. 
 

(1) (2) (3)  (4) (5) 

 𝑃1/0 𝑃1/0(𝑞) 𝐶𝑜𝐹( 𝑃1/0(𝑞))  

Symbol of 

the formula 
𝑓 (

𝑝1 𝑞1

𝑝0 𝑞0) 𝑓 (
𝑞1 𝑝1

𝑞0 𝑝0) 𝑉1/0/𝑓 (
𝑞1 𝑝1

𝑞0 𝑝0) 
Symbol of 

the FA formula 

L 𝑝1 ∙ 𝑞0

𝑝0 ∙ 𝑞0
 

𝑞1 ∙ 𝑝0

𝑞0 ∙ 𝑝0
 

𝑝1 ∙ 𝑞1

𝑝0 ∙ 𝑞1
 

𝑃𝑎 = 𝐹𝐴(𝐿) 

l 
∏(

𝑝𝑖
1

𝑝𝑖
0)𝑤𝑖

0
 ∏(

𝑞𝑖
1

𝑞𝑖
0)𝑤𝑖

0
 𝑉1/0/ ∏(

𝑞𝑖
1

𝑞𝑖
0)𝑤𝑖

0
 

𝐹𝐴(𝑙) 

Lh 1/ ∑ 𝑤𝑖
0𝑝𝑖

0/1
 1/ ∑ 𝑤𝑖

0𝑞𝑖
0/1

 𝑉1/0/ ∑ 𝑤𝑖
0𝑞𝑖

0/1
 𝐹𝐴(𝐿ℎ) 

Pl ∑ 𝑤𝑖
1𝑝𝑖

1/0
 ∑ 𝑤𝑖

1𝑞𝑖
1/0

 𝑉1/0/ ∑ 𝑤𝑖
1𝑞𝑖

1/0
 𝐹𝐴(𝑃𝑙) 

p 
∏(

𝑝𝑖
1

𝑝𝑖
0)𝑤𝑖

1
 ∏(

𝑞𝑖
1

𝑞𝑖
0)𝑤𝑖

1
 𝑉1/0/ ∏(

𝑞𝑖
1

𝑞𝑖
0)𝑤𝑖

1
 

𝐹𝐴(𝑝) 

 Pa 𝑝1 ∙ 𝑞1

𝑝0 ∙ 𝑞1
 

𝑞1 ∙ 𝑝1

𝑞0 ∙ 𝑝1
 

𝑝1 ∙ 𝑞0

𝑝0 ∙ 𝑞0
 

𝐿 = 𝐹𝐴(𝑃𝑎) 

  

 
 

 

       

 


