Siirry etusivulle - Tilastokeskus
Tieto&trendit - etusivulle

Kysymyksillä on yhä paikkansa

Myös ison datan aikakaudella tarvitaan lomaketutkimuksia. Tietolähteet ovat toisiaan täydentäviä, eivät poissulkevia. Tiedon alkuperä ja tuotanto­vaiheet on kuitenkin aina tunnettava, ettei niiden pohjalta synny virheellisiä tulkintoja ja johtopäätöksiä.


Tilastoitavat ilmiöt ja tietotarpeet ovat ison datan tulosta huolimatta monesti sellaisia, että tiedot on kerättävä kysymällä eivätkä tarjolla olevat hallinnolliset aineistot tai iso data pysty niitä korvaamaan.


Tilaston ja lomake­tutkimukseen perustuvan tutkimuksen, surveyn, mieli on relevantin tiedon tuottamisessa. Samat tavoitteet pätevät myös isoon dataan, joten tiedon käyttäjän on tärkeä osata jäsentää käyttämänsä tiedon lähteitä ja ymmärtää sen alkuperää.


Yrityksiä koskevasta lomake­tutkimuksesta on hiljattain julkaistu ensimmäinen kansain­välinen laaja käsikirja (Snjikers ym. 2013, kts. juttu alla.). Nostamme siitä esiin erityisesti tiedon laatuun liittyviä kysymyksiä sekä tiedonkeruu­välineiden suunnitteluun liittyvää menetelmiä.

Lomakkeesta tuli yhteiskunta­tieteiden mittausväline


”Mittaa se mikä on mitattavissa, tee mitattavaksi se, mitä ei voi mitata”. Näillä Galileo Galilein sanoilla Tuukka Perhoniemi kuvaa väitös­kirjassaan Mitan muunnelmat (2014) mittaamisen muuttumista luonnon­tieteen menetelmäksi, jossa havainnot ja matematiikka yhdistyivät. 1800-luvulle tultaessa syntyi uudenlainen malli objektiiviselle tiedolle, kun tilastollisuutta, sattumaa ja vaihtelua, ryhdyttiin pitämään yhtä merkittävinä kuin luonnonlakeja.


Myös suomalainen tilasto­toimi kumpuaa tästä mittaamisen historiallisesta perinteestä. Ensimmäiset talous­tilastot syntyivät hallinnollisten rekisterien pohjalta, kuten vuodesta 1813 julkaistu Tulli­hallituksen ulkomaan­kauppatilasto. Hallinnollisten aineistojen riittämätön tietosisältö ja otanta­tutkimuksen keksiminen toivat kuitenkin 1900-luvulla kysely­lomakkeen tilastolliseen tiedon­hankintaan yhteiskunta­tieteiden mittaus­instrumentiksi, ja kummatkin toimivat edelleen tilastojen tietopohjana.


Kyselylomake on lomake­tutkimuksessa se väline, jolla asioita tehdään mitattavaksi. Tilastojen takana ovat teoria yhteiskunnan toiminnasta ja käsitteet, joilla yhteiskuntaa kuvataan. Käsitteet ovat abstrakteja, ja operationalisoinnin kautta niille määritellään konkreettisia ja empiirisesti havaittavia vastineita. Esimerkiksi käsite ”työtön” voidaan operationalisoida henkilöksi, joka etsii työtä aktiivisesti ja joka voi aloittaa työn kahden viikon sisällä.


Luonnontieteissä olion tai lauman käyttäytymistä voitaisiin tarkkailla havaintojen keräämiseksi. Mutta kun kyseessä on ihminen tai ihmis­yhteisö kuten yritys, suullinen tai kirjallinen kommunikaatio itse tutkittavan kohteen kanssa on käytännöllisempää ja eettisempää. Havainnot saadaan siis operationalisoinnista johdettujen kysymysten kautta kysymällä.


Kyselylomakkeesta puhumme, kun nämä kysymykset esitetään vastaajalle paperilla tai näytöllä tai haastattelija esittää ne joko puhelimessa tai kasvotusten. Vastaaja saa tehtäväksi lomakkeelle vastaamisen ja tietojen palauttamisen tilaston tekijälle tämän määrittelemässä muodossa. Se, kuinka vastaaja tässä tehtävässä onnistuu, vaikuttaa keskeisesti prosessin lopputuotteen, tilaston laatuun.


Kyselytutkimus onnistuu, kun operationalisoinnin käänteis­toimenpiteen eli tulkinnan avulla pystytään aineiston kautta, tässä tapauksessa lomake­vastauksista, tarkastelemaan tosielämän säännön­mukaisuutta ja teorian paikkansapitävyyttä (Sund 2015).

Ruohonjuuritason teoreetikot


Lomaketestauksessa on kyse tilaston­tekijöiden jalkautumisesta vastaajien luokse koettelemaan kysely­lomakkeen sisältöä ja käytettävyyttä. Keskeisinä syinä toiminnalle ovat olleet havainnot siitä, että vastaaminen tilasto­viranomaisen lähettämiin kyselyihin ei olekaan niin helppoa kuin on oletettu.


Tällä taas on suora vaikutus tilastoissa ilmenevään mittaus­virheeseen ja yrityksiin kohdistuvaan vastaus­rasitteeseen, joiden minimoiminen on yksi keskeinen virallisen tilasto­toimen tavoite myös kansain­välisesti. Toisaalta tiedonkeruuseen liittyvät vaikeudet ovat tilaston­tekijän näkökulmasta ylimääräinen kustannus, joka syntyy tietojen editoinnista sekä ylimääräisistä yhteyden­otoista yrityksiin.


Antiikissa theoria tarkoitti kiinnostuneen ihmisen pidättyväistä tarkkailua siitä, miten asiat ovat; teoreetikko ei puuttunut asioiden kulkuun, mutta oli osa havainto­tilannetta (Perhoniemi 2014). Samassa hengessä menemme lomake­testauksissa yrityksiin ja pyrimme saamaan näkyviin asioiden kulun ja vastaajan ajatukset samalla, kun vastaaja täyttää tiedonkeruu­lomaketta. Sähköisten tiedonkeruu­välineiden toimivuus on keskeinen kiinnostuksen kohde.


Suurimpana poikkeamana normaaliin vastaamis­tilanteeseen on se, että pyydämme vastaajaa kertomaan samanaikaisesti, kuinka hän päätyy vastauksiinsa tai mitä mahdollisia ongelmia itse vastaamiseen tai tietojen kokoamiseen vastattavaan muotoon liittyy.


Tiedonkeruulomakkeen käytettävyyden rinnalla myös lomakkeen sisältö­kysymykset ovat kiinnostuksen kohteena. Yritys­kyselyjen kohdalla itse kuvauskohteen, yritysten liiketoiminta­ympäristön, muutos aiheuttaa haasteita perinteisille kyselyille. Haluttu tieto voi olla pirstaloitunut yrityksen sisällä jopa maailman eri puolille, tai sen tuottaminen vastaus­lomakkeelle voi osoittautua, jos ei mahdottomaksi, niin ainakin työlääksi tehtäväksi.


Yhteiskunnan ja ilmiöiden muuttuessa yhä nopeammin, myös kieli ja tavat jäsentää asioita muuttuvat. Tämä tarkoittaa, että kysymyksillä tietoja keräävän tahon tulee entistä paremmin ymmärtää vastaajia ja niitä olosuhteita, missä vastaukset syntyvät.


Kun asioista ”tehdään mitattavia” eli ne käsitteellistetään mitattavaksi sopivalla tavalla, korostetaan aina jotakin ominaisuutta toisten kustannuksella (Perhoniemi 2014). Tämä on näkynyt yrityksille suunnatuissa kyselyissä esimerkiksi siinä, että useat muotoilut lomakkeella sopivat paremmin teollisuus­yrityksiin kuin palvelualan yrityksiin. Tällä on luonnolliset historialliset taustansa niin tilasto­toimessa kuin yhteis­kunnassakin, joka oli toimiala­rakenteeltaan hyvin erilainen silloin kun ensimmäisiä yritystiedon­keruulomakkeita suunniteltiin.


Toisaalta tilastotoimen luonteeseen taas kuuluu vakaus ja sen myötä hitaus muutoksissa, koska ilmiöitä halutaan tarkastella ja vertailla kymmenien tai joskus jopa satojen vuosien taakse. Tämä koskee niin luokituksia kuin tiedonkeruu­lomakkeitakin, jotka ovat keskeisiä tietojen vertailu­kelpoisuuden ja aikasarjojen kannalta. Keskeiset kansainväliset luokitus­päivitykset esimerkiksi toimialan ja ammatin osalta tapahtuvat usein yli 10 vuoden välein.

Vastaustilanteen ja tiedon laadun yhteys


Iso data syntyy pääsääntöisesti automatisoituina verkkohakuina (web scraping) tai oheistuotteena kuten verkkopalvelun käyttäjien lokitietoina. Tiedonkeruun kohde ei välttämättä tiedä tai jatkuvasti tiedosta, että sen toiminnasta kerätään tietoa.


Yritystilastoinnissa kuitenkin tarvitaan nimenomaan tietoja, joihin vain tilastoinnin kohteena olevalla yrityksellä on pääsy ja myös tiukka intressi säännellä, kenelle tietoja luovutetaan. Tiedonkerääjään on tällöin ymmärrettävä yritysten sisäistä raportointia ja tietojärjestelmiä sekä sitä, mitä tietopyyntöön vastaaminen yritykseltä vaatii.


Snjikers ym. (2013) kuvaavat käsikirjassaan yksityis­­kohtaisesti tilasto­­viranomaisen ja vastauksen antavan yrityksen välistä vuorovaikutusta. Kirjoittajien mukaan vastaamis­prosessiin, josta itse lomakkeen täyttäminen on vain yksi osa, liittyy erilaisia tehtäviä ja rooleja:


1. Tiedon lähteen kartoitus; mitä tietoa yrityksestä on saatavilla niiden omista rekistereistä ja mihin vastaaja voi vastata muistinvaraisesti


2. Vastaamistehtävän organisointi; kuka yrityksen puolesta vastaa ja kuinka monta vastaajaa tarvitaan ja millä aikataululla


3. Kysymysten ymmärtäminen ja tulkinta


4. Muistaminen ja tietojen hakeminen


5. Vastauksen sopivuuden arviointi


6. Vastauksen kommunikointi


7. Tietojen tarkistus ja luovutus sekä mahdolliset yrityksen sisäiset järjestelyt luovutettavien tietojen tarkistamiseksi sekä päätökset siitä, mitä tietoja yritys haluaa luovuttaa


Yritykset raportoivat liiketoiminnastaan lähtökohtaisesti kahdella eri tavalla. Yrityksen johto tarvitsee tietoa liiketoiminnan johtamisen ja ohjaamisen tueksi, jotta tavoitteeseen toiminnan kannattavuudesta päästäisiin. Lainsäädäntö myös asettaa velvoitteitta kuten tilinpäätöksen tekemisen ja raportit verotusta varten.


Kyselytutkimuksiin osallistuminen taas tarkoittaa yritykselle sellaisten tietojen raportoimista, mitä ei yrityksissä tehdä lähtö­kohtaisesti. Vaikka pääosa tilasto­viranomaisten tekemistä kyselyistä on lakisääteisiä, yritys ei aina ole varautunut kyselyissä esiintyvien tietojen raportointiin, vaikka yrityksiä tästä ennakkoon informoidaankin. Tämä taas johtaa vastaamis­tilanteessa erilaisiin haasteisiin.


Vastaajat joutuvat usein pohtimaan sitä, kuinka toimivat tilanteissa, joissa tieto ei ole helposti saatavilla. Tilaston laadun kannalta tällä on taas suuri merkitys. Yhteydet tietojen saatavuuden ja vastausten laadun välillä nousevat tavalla tai toisella esiin yritys­lomakkeisiin vastaamisessa ja näkyvät lukuisissa testaus­tilanteissamme. Bavdaž (2010) on mallintanut tätä yhteyttä kuvion 1 mukaisesti.


 


Kuvio 1. Tietojen saatavuuden ja vastauksen laadun välinen yhteys

 Kuvio 1. Tietojen saatavuuden ja vastauksen laadun välinen yhteys Lähde: Bavdaž 2010


Lähde: Bavdaž 2010


 

Kenellä on sisällön määrittelyvalta?


Kuinka voisi jäsentää isoa dataa ja lomaketutkimus­aineistoja niin, että tilaston käyttäjät ymmärtäisivät niiden keskeiset eroavaisuudet – ja siten myös niiden käytön reunaehtoja? Minkälaisesta tiedosta isossa datassa on kysymys?


Kuten Hannes Heikinheimo ja Antti Ukkonen (2015) toteavat, ison datan tarkoituksena ei lähtökohtaisesti ole ollut tutkia ja ymmärtää lukujen taustalla olevia ilmiöitä vaan toteuttaa ennustavia ja ennakoivia verkkopalveluita. Ison datan soveltamisessa uranuurtajia ovat erityisesti olleet internet­yhtiö Google tiedonhaku­palveluillaan ja sosiaalisen median palvelut, kuten Facebook, käyttäjälle kohdennetuilla sisällöillään.


Nerokas oivallus on ollut siinä, että valtavissa massa-aineistoissa yksinkertaiset korrelaatiot muuttujien välillä toimivat ennustamisessa paremmin kuin muuttujien syy–seuraus-suhteiden ymmärtäminen ja näiden pohjalta rakennetut monimutkaiset laskentamallit. Aineistoa ja sen yksittäisiä havaintoja ei tarvitse tuntea, kun olennaista on käyttäjälle välittyvä kokemus verkko­palvelun älykkyydestä, eli vaikkapa kuinka hyvin sen onnistuu valikoida kuluttajalleen räätälöityjä hakutuloksia tai ystävien tuottamaa sosiaalisen median sisältöä.


Isoa dataa ja sen työkaluja ei siis ole luotu mittareiksi ja mittaus­välineiksi, vaikka siihenkin ne taipuvat. Tilastoissa, ja etenkin lomake­tutkimuksissa, asia on juuri päinvastoin. Tilasto on objektiivinen ja puolueeton yhteis­kunnallisen ilmiön kvantitatiivinen kuvaus.


Tilastojen kuvaamat faktat toimivat yhteis­kunnallisen päätöksen­teon pohjana, mutta iso data algoritmeineen tekee myös itse päätöksiä käyttäjänsä puolesta.


Robert Groves (2011) puhuu lomake­tutkimuksen ja ison datan luonteista käsitteillä suunniteltu (designed) data ja orgaaninen (organic) data. Suunniteltuun dataan liittyy aina joku tunnistettava toimija. Kuinka toimija suunnittelun toteuttaa, riippuu tekijästä, mutta toimijalla on joka tapauksessa valta tehdä haluamiaan ratkaisuja tiedon­keruuseen ja kysymyksen­asetteluun liittyen.


Tätä valtaa taas kolmannella osapuolella, kuten tilasto­viranomaisella, ei ole isoon dataan liittyen, ja hallinnollistenkin aineistojen osalta vain rajallisesti. Esimerkiksi lainsäädäntöön tehtävät muutokset voivat lopettaa tilastojen tekoon sopivan hallinnollisen aineiston tuottamisen.


Tilastojen tekemisen näkökulmasta eri aineistoja voidaan vertailla sisällön määrittely­vallan kautta. Tällä tarkoitamme sitä, missä määrin tilaston tekijä voi määritellä minkälaiseen sisältöön ja aineistoon tilastot perustuvat. Tätä havainnollistaa kaksi­ulotteinen kuvio 2, jossa toisena ulottuvuutena on havaintojen ja mittaus­ulottuvuuksien määrä, ja jolla iso data on ylivertainen.


 


Kuvio 2. Sisällön määrittelyvallan ja aineiston koon yhteys

Kuvio 2. Sisällön määrittelyvallan ja aineiston koon yhteys


 


Hallinnollisissa aineistoissa sisällön määrittely­valta on kullakin asian­omaisella viranomaisella. Esimerkiksi Väestörekisteri­keskuksen väestötieto­järjestelmässä on perustiedot Suomen kansalaisista ja Suomessa vakinaisesti asuvista ulkomaalaisista.


Sisällön määrittely­valtaa voidaan tilastojen näkökulmasta käyttää näiden hallinnollisten aineistojen suunnittelussa tilastojen tarpeet huomioiden. Lainsäädännöllä on luonnollisesti keskeinen rooli ja asia on huomioitu uudessa tilastolaissa. Tärkeätä on myös muistaa, että moni hallinnollinen aineisto itsessään kerätään kysymyksillä ja lomakkeilla eli lomake­tutkimuksen työkaluilla.


Lomaketutkimuksessa taas tiedon kerääjä on aktiivinen toimija ja kykenee määrittämään, miten ja millä välineillä kysymykset vastaajille esitetään. Tiedon kerääjän ja suunnittelijan etäisyys tiedon ”loppukäyttäjään” on myös läheisempi, kun voidaan suoraan esittää haluttu kysymys.


Laadullinen tutkimus on toinen ääripää; esimerkiksi kouralliseen havaintoja perustuvissa haastatteluissa kysyttyjä asioita kyetään myös tarkentamaan suoraan vastaajilta ja saamaan vielä yksityis­kohtaisempaa tietoa kuin mitä lomake­tutkimuksen strukturoiduilla lomakkeilla kyetään keräämään.


Iso data ja lomaketutkimus tulevat varmasti molemmat olemaan tulevaisuudessa keskeisiä yhteiskuntaa kuvaavia tietolähteitä. Lomake­tutkimusalan keskeinen järjestö AAPOR (2015) onkin julkaissut hiljattain raportin, jossa kuvataan isoa dataa laajalti ja pohditaan sen käyttöä lomake­tutkimuksessa. Raportissa järjestö suosittelee:


-kehittämään standardeja ison datan läpinäkyvään käyttöön lomake­tutkimuksessa


-näkemään molemmat tietolähteet toisiaan täydentävinä, ei poissulkevina


-ryhtymään kouluttamaan organisaatioita ison datan käytössä


-informoimaan kansalaisia ison dataan hyödyistä ja riskeistä


-selventämään käytettyä terminologiaa


-olemaan aktiivinen toimija julkis­hallinnon puolella ison datan käytön infra­struktuurin kehittämisessä lomake­tutkimuksessa


On data pientä tai isoa, tekstiä tai numeroita, tiedonkäyttäjän tulee olla kriittinen tietolähteiden osalta. Tärkeää on ymmärtää tiedon ja aineiston synty­prosessin alkuvaiheet. Ja jo ennen sitä on hyvä tietää, kuinka tietotarpeet ja tutkimus­kysymykset on määritelty. Onko ne tehty käytettävissä olevan aineiston perusteella jälkikäteen, vai päinvastoin.


 

Kirjoittajat työskentelevät Tilastokeskuksen tiedonhankinta -yksikön SurveyLaboratoriossa.


 

Lähteet:

AAPOR Report on Big Data 2015. American Association for Public Opinion research. AAPOR Big Data Task Force.

http://doku.iab.de/grauepap/2015/BigDataTaskForceReport_FINAL_2_12_15.pdf.

Bavdaž, Mojka 2010. The Multidimensional Integral Business Survey Response Model. Survey Methodology 36.

Groves, R. 2011. “Designed Data” and “Organic Data”. The Director’s Blog, The U.S. Census Bureau, 31.5.2011.

Heikinheimo, Hannes & Ukkonen Antti 2015. Ison datan alkulähteillä. Tieto&trendit – talous- ja hyvinvointikatsaus 2/2015.

Perhoniemi, Tuukka 2014. Mitan muunnelmat – miten määritämme maailmaa, ihmistä ja tietoa. Helsinki: Vastapaino.

Snijkers, Ger & Haraldsen, Gustaf & Jones, Jacqui & Willimack, Diana 2013. Designing and conducting business surveys. Hoboken, New Jersey: John Wiley & Sons.

Sund, Reijo 2015. Miksi isoon dataan hukutaan? Tieto&trendit – talous- ja hyvinvointikatsaus 2/2015.


 


Ensimmäinen käsikirja yrityskyselyistä


Designing and Conducting Business Surveys (2013) on laatuaan ensimmäinen yritys­kyselyjä koskeva käsikirja, jonka ohjaavana näkökulmana on prosessi­laatu. Tietopohjan muodostavat useat eri oppiaineet, kuten laskentatoimi, sosiologia, sosiaali­psykologia, psykologia, organisaatio­tiede ja lomaketutkimus­metodologia.


Käsikirja muodostaa kattavan kokonais­kuvan yrityskyselyjen suunnittelusta ja toteutuksesta aina tilastojen ja tutkimusten raportointiin asti. Se on suunnattu yritys­kyselyjen parissa toimiville sekä yritys­kyselyjen tuloksien ja niistä tehtävien tilastojen käyttäjille.


Kirja tarjoaa tutkimus­tietoon ja esimerkkeihin perustuvia suosituksia mittaus­virheiden, kustannusten ja vastaus­rasitteen hallitsemiseksi. Se avaa myös useita uusia alueita tulevaisuuden tutkimukselle.


 

Miksi tätä sisältöä ei näytetä?

Tämä sisältö ei näy, jos olet estänyt evästeiden käytön. Jos haluat nähdä sisällön, tarkista evästeasetuksesi.